• Title/Summary/Keyword: Test Automation Tool

Search Result 70, Processing Time 0.022 seconds

Formal Validation Method and Tools for French Computerized Railway Interlocking Systems

  • Antoni, Marc
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 2009
  • Checks and tests before putting safety facilities into service as well as the results of these tests are essential, time consuming and may show great variations between each other. Economic constraints and the increasing complexity associated with the development of computerized tools tend to limit the capacity of the classic approval process (manual or automatic). A reduction of the validation cover rate could result in practice. This is not compatible with the French national plan to renew the interlocking systems of the national network. The method and the tool presented in this paper makes it possible to formally validate new computerized systems or evolutions of existing French interlocking systems with real-time functional interpreted Petri nets. The aim of our project is to provide SNCF with a method for the formal validation of French interlocking systems. A formal proof method by assertion, which is applicable to industrial automation equipment such as interlocking systems, and which covers equally the specification and its real software implementation, is presented in this paper. With the proposed method we completely verify that the system follows all safety properties at all times and does not show superfluous conditions: it replaces all the indoor checks (not the outdoor checks). The advantages expected are a significant reduction of testing time and of the related costs, an increase of the test coverage rate, an answer to the new demand of railway infrastructure maintenance engineering to modify and validate computerized interlocking systems. Formal methods mastery by infrastructure engineers are surely a key to prove that more safety is not necessarily more expensive.

  • PDF

A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M) (화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구)

  • Lee, Hyeon-U;Park, Jun-Min;Jeong, Sang-Cheol;Jeong, Hae-Do;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

Development of Feedback Data Automated Verification Program for Mission S/W (임무 S/W 시험을 위한 피드백 데이터의 기댓값 검증 자동화 도구 개발)

  • Kwon, GI-Bong;Lee, Ha-Yoeun;Ha, Seok-Wun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.871-877
    • /
    • 2021
  • Aircraft defects are important matters directly related to the operation of the aircraft and the life of the pilot. The defects in the mission software that occur during aircraft control seriously affect the pilot's mission performance and safety. Therefore, the organization in charge of aircraft development or software defects are reinforced in the process to identify and eliminate defects in the early stages of development, and a lot of labor and time are spent, but due to the nature of the mission software, strong functional coupling with other avionics and high complexity, so there are restrictions on the identification and removal of software defects through the existing test method. This study analyzes the effect of securing mission software integrity and reducing test cost through data integrity verification by developing a tool that automates the verification of expected value of feedback data among communication data of mission computer interlocking equipment.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

The Development of Module for 5-axis Drilling of a Closed Type Impeller (밀폐형 임펠러의 5축 드릴링 모듈의 개발)

  • Son, Hwang-Jin;Cho, Yoon-Tea;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • An impeller is difficult to machine due to the complex, overlapping and twisted shapes that form the blades of an impeller. Therefore, most CAM software companies have developed a CAM module for manufacturing an impeller in addition to their CAM software. However, it is not easy for inexperienced users to machine impellers. The purpose of this paper is to outline the development of an automatic CAM module for the manufacturing of an impeller (E-ICAM) which is based on visual basic language and which uses a CATIA graphical environment in order to simplify the machining of impellers. The automatic CAM module generates a tool path and proposes the recommended cutting condition according to the stock and tool material. In addition, it includes a post-processor for five-axis control machining. Therefore, a user can easily machine impellers using this automation module. There are two types of impellers: the closed and open types. The closed-type impeller consists of the body and cover parts. To combine these two parts, it is necessary to create tap holes on the shroud of the body. Therefore, in the study, a drilling CAM program for a closed-type impeller is developed and manufactured by creating NC data from the developed drilling program. After manufacturing the test specimen, its compatibility was verified.

Verification Methods for Vulnerabilities of Airborne Object-Oriented Software (항공용 객체지향 소프트웨어에 대한 취약점 검증 방안)

  • Jang, Jeong-hoon;Kim, Sung-su;Lee, Ji-hyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2022
  • As the scale of airborne system software increases, the use of OOT (Object-Oriented Technology) is increasing for functional expansion, efficient development, and code reuse, but the verification method for airborne object-oriented software is conducted from the perspective of the existing procedure-oriented program. The purpose of this paper was to analyze the characteristics of OOT and the vulnerabilities derived from the functional characteristics of OOT, and present a verification method applicable to each software development process (Design, Coding and Testing) to ensure the functional safety integrity of aviation software to which OOT is applied. Additionally, we analyzed the meaning of the static analysis results among the step-by-step verification measures proposed by applying LDRA, a static analysis automation tool, to PX4, an open source used to implement flight control software.

The Development of Automated Personalized Self-Care (APSC) Program for Patients with Type 2 Diabetes Mellitus (제2형 당뇨병 환자를 위한 자동 맞춤형 셀프케어 프로그램 개발)

  • Park, Gaeun;Lee, Haejung;Khang, Ah Reum
    • Journal of Korean Academy of Nursing
    • /
    • v.52 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Purpose: The study aimed to design and develop an automated personalized self-care (APSC) program for patients with type 2 diabetes mellitus. The secondary aim was to present a clinical protocol as a mixed-method research to test the program effects. Methods: The APSC program was developed in the order of analysis, design, implementation, and evaluation according to the software development life cycle, and was guided by the self-regulatory theory. The content validity, heuristics, and usability of the program were verified by experts and patients with type 2 diabetes mellitus. Results: The APSC program was developed based on goal setting, education, monitoring, and feedback components corresponding to the phases of forethought, performance/volitional control, and self-reflection of self-regulatory theory. Using the mobile application, the participants are able to learn from educational materials, monitor their health behaviors, receive weekly-automated personalized goals and feedback messages, and use an automated conversation system to solve the problems related to self-care. The ongoing two-year study utilizes a mixed method design, with 180 patients having type 2 diabetes mellitus randomized to receive either the intervention or usual care. The participants will be reviewed for self-care self-efficacy, health behaviors, and health outcomes at 6, 12, 18, and 24 months. Participants in the intervention group will be interviewed about their experiences. Conclusion: The APSC program can serve as an effective tool for facilitating diabetes health behaviors by improving patients' self-care self-efficacy and self-regulation for self-care. However, the clinical effectiveness of this program requires further investigation.

Automatic Detection of Usability Issues on Mobile Applications (모바일 앱에서의 사용자 행동 모델 기반 GUI 사용성 저해요소 검출 기법)

  • Ma, Kyeong Wook;Park, Sooyong;Park, Soojin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.319-326
    • /
    • 2016
  • Given the attributes of mobile apps that shorten the time to make purchase decisions while enabling easy purchase cancellations, usability can be regarded to be a highly prioritized quality attribute among the diverse quality attributes that must be provided by mobile apps. With that backdrop, mobile app developers have been making great effort to minimize usability hampering elements that degrade the merchantability of apps in many ways. Most elements that hamper the convenience in use of mobile apps stem from those potential errors that occur when GUIs are designed. In our previous study, we have proposed a technique to analyze the usability of mobile apps using user behavior logs. We proposes a technique to detect usability hampering elements lying dormant in mobile apps' GUI models by expressing user behavior logs with finite state models, combining user behavior models extracted from multiple users, and comparing the combined user behavior model with the expected behavior model on which the designer's intention is reflected. In addition, to reduce the burden of the repeated test operations that have been conducted by existing developers to detect usability errors, the present paper also proposes a mobile usability error detection automation tool that enables automatic application of the proposed technique. The utility of the proposed technique and tool is being discussed through comparison between the GUI issue reports presented by actual open source app developers and the symptoms detected by the proposed technique.

Harmonization of Hemolysis Index in Clinical Chemistry Laboratory and Its Application as a Result Verification Tool (화학검사 결과의 검증을 위한 용혈 지수 일치화 도구 개발)

  • Pyo, Sang Shin;Nam, Hyun Su;Cha, Young Jong;Lee, Seungkwan;Lee, Hae Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.350-358
    • /
    • 2017
  • The hemolysis index (HI) is semi-quantitative marker for hemolysis. Because the characteristics of the HI vary from one commercial platform to another, no standardization or harmonization of the HI is currently available. Specimens (N=40) randomly selected from clinical patients were artificially hemolyzed in vitro. The serum of the specimens was then diluted with a 20 mg/dL difference between 0~300 mg/dL based on serum hemoglobin measured using the XE-2100 hematology automation equipment (Sysmex, Japan). Diluted serum was measured using the Hitachi-7600 biochemical automation equipment (Hitachi, Japan) to differentiate between HI and serum hemoglobin. The data showed linearity between HI and serum hemoglobin and that HI 1 contained approximately 20 mg/dL of serum hemoglobin. To determine the blood rejection threshold, the HI was divided into three groups: HI 0~1, HI 4~6, HI 9~15. After another batch of clinical specimens (N=40) was measured using a Hitachi-7600 (Hitachi, Japan), each specimen was moved forward and backward with the piston of the syringe to induce an artificial in vitro hemolysis, then measured again with a Hitachi-7600 (Hitachi, Japan). The percentage difference between the three groups was analyzed by ANOVA or the Kruskal-Wallis test. In the post-test, there were significant differences between the HI 0~1 and the HI 5~6: Glucose, creatinine, total protein, AST, direct bilirubin, uric acid, phosphorus, triglyceride, LDH, CPK, Magnesium, and potassium levels. Because many clinical tests differed significantly, the threshold for hemolysis could be appropriate for HI 5 (serum hemoglobin 100 mg/dL).

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.