DOI QR코드

DOI QR Code

Harmonization of Hemolysis Index in Clinical Chemistry Laboratory and Its Application as a Result Verification Tool

화학검사 결과의 검증을 위한 용혈 지수 일치화 도구 개발

  • Pyo, Sang Shin (Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea) ;
  • Nam, Hyun Su (Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea) ;
  • Cha, Young Jong (Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea) ;
  • Lee, Seungkwan (Department of Health and Environmental Science, College of Health Science, KoreaUniversity) ;
  • Lee, Hae Kyung (Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea)
  • 표상신 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 남현수 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 차영종 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 이승관 (고려대학교 보건과학대 보건환경융합과학부) ;
  • 이혜경 (가톨릭대학교 의정부성모병원 진단검사의학과)
  • Received : 2017.08.01
  • Accepted : 2017.09.20
  • Published : 2017.12.31

Abstract

The hemolysis index (HI) is semi-quantitative marker for hemolysis. Because the characteristics of the HI vary from one commercial platform to another, no standardization or harmonization of the HI is currently available. Specimens (N=40) randomly selected from clinical patients were artificially hemolyzed in vitro. The serum of the specimens was then diluted with a 20 mg/dL difference between 0~300 mg/dL based on serum hemoglobin measured using the XE-2100 hematology automation equipment (Sysmex, Japan). Diluted serum was measured using the Hitachi-7600 biochemical automation equipment (Hitachi, Japan) to differentiate between HI and serum hemoglobin. The data showed linearity between HI and serum hemoglobin and that HI 1 contained approximately 20 mg/dL of serum hemoglobin. To determine the blood rejection threshold, the HI was divided into three groups: HI 0~1, HI 4~6, HI 9~15. After another batch of clinical specimens (N=40) was measured using a Hitachi-7600 (Hitachi, Japan), each specimen was moved forward and backward with the piston of the syringe to induce an artificial in vitro hemolysis, then measured again with a Hitachi-7600 (Hitachi, Japan). The percentage difference between the three groups was analyzed by ANOVA or the Kruskal-Wallis test. In the post-test, there were significant differences between the HI 0~1 and the HI 5~6: Glucose, creatinine, total protein, AST, direct bilirubin, uric acid, phosphorus, triglyceride, LDH, CPK, Magnesium, and potassium levels. Because many clinical tests differed significantly, the threshold for hemolysis could be appropriate for HI 5 (serum hemoglobin 100 mg/dL).

용혈 지수(hemolysis index)는 생화학 장비에서의 용혈을 위한 반정량 지표이다. 용혈 지수의 특성이 상업 플랫폼마다 다르기 때문에 용혈 지수의 표준화 또는 일치화는 현재 되어 있지 않다. 진단검사의학에서 일치화(harmonization)는 측정 절차와 상관없이 동일한 결과와 동일한 해석을 할 수 있는 능력을 말한다. 임상 환자의 혈액 중에서 무작위로 추출한 40개의 검체를 인위적으로 체외 용혈(in vitro hemolysis)시킨다. 혈액 자동화 장비인 XE-2100 (Sysmex, Japan)에서 측정된 혈청 헤모글로빈을 기준으로 검체의 혈청을 0~300 mg/dL 사이에서 20 mg/dL 차이로 각각을 희석시킨다. 희석된 혈청 헤모글로빈을 생화학 자동화 장비 Hitachi-7600 (Hitachi, Japan)으로 측정하여 용혈 지수와 혈청 헤모글로빈을 평가하였다. 용혈 지수와 혈청 헤모글로빈은 선형성을 보였으며 용혈 지수 1은 대략 혈청 헤모글로빈 20 mg/dL 정도였다. 용혈 거절 기준을 결정하기 위해 용혈 지수를 세 그룹으로 나눈다: 용혈 지수 0~1, 용혈지수 4~6, 용혈 지수 9~15. 또 다른 임상 검체 40개의 검체를 Hitachi-7600 (Hitachi, Japan)로 각각의 임상 검사 종목을 측정한 후, 각각의 검체를 주사기의 피스톤을 앞 뒤로 움직여 인위적인 체외 용혈을 시키고 Hitachi-7600 (Hitachi, Japan)로 측정하였다. 세 그룹 사이의 임상 검사 종목의 용혈로 인한 백분율 차이(percentage difference)를 ANOVA 또는 Kruskal-Wallis test 분석하였다. 사후 검정에서 용혈 지수 0~1인 그룹과 용혈지수 5~6인 그룹 사이에 유의한 차이가 나는 종목들은 Glucose, creatinine, total protein, AST, direct bilirubin, uric acid, phosphorus, triglyceride, LDH, CPK, magnesium, potassium이였다. 많은 임상 검사 종목들이 용혈지수 4~6인 그룹과 참조 그룹인 용혈지수 0~1인 그룹 간에 통계적으로 유의미한 차이를 보이기 때문에 용혈 기준은 대략 용혈지수 5 (혈청 헤모글로빈 100 mg/dL)가 적합하다 판단된다.

Keywords

References

  1. Cho MS, Hwang MS. Factors affecting hemolysis in blood sampling and repeated sampling in the emergency department. J Korean Clin Nurs Res. 2011;17(3):399-410.
  2. Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem. 2007;53(7):1338-1342. https://doi.org/10.1373/clinchem.2007.088344
  3. Lippi G, Blanckaert N, Bonini P, Green S, Kitchen S, Palicka V, et al. Haemolysis: an overview of the leading cause of unsuitable specimens in clinical laboratories. Clin Chem Lab Med. 2008;46(6):764-772. https://doi.org/10.1515/CCLM.2008.170
  4. Yanagisawa Y, Isobe K, Naito A, Ishijima M, Nanmoku T, Yamamoto T, et al. Influence of in vitro hemolysis on 80 different laboratory tests. Clin Lab. 2017;63(2):219-226.
  5. Grant MS. The effect of blood drawing techniques and equipment on the hemolysis of ED laboratory blood samples. J Emerg Nurs. 2003;29(2):116-121. https://doi.org/10.1067/men.2003.66
  6. Thomas L. Haemolysis as influence and interference factor. Biochim Clin. 2002;26(2):95-98.
  7. Dolci A, Panteghini M. Harmonization of automated hemolysis index assessment and use: is it possible? Clin Chim Acta. 2014;432:38-43. https://doi.org/10.1016/j.cca.2013.10.012
  8. Tate JR, Myers GL. Harmonization of clinical laboratory test results. EJIFCC. 2016;27(1):5-14.
  9. Chakravarthy VK, Chandra DN, Prasanna BS, Rao M, Jaya T, Rao DR. Haemoglobin estimation by non-cyanide methods. J Clin Diagn Res. 2012;6(6):955-958.
  10. Kwon YI. A review of the characteristics of early apparatus and methods for hemoglobin estimation. Korean J Clin Lab Sci. 2016;48(4):401-410. https://doi.org/10.15324/kjcls.2016.48.4.401
  11. Davis BH, Jungerius B. ICSH technical report 1-2009: new reference material for haemiglobincyanide for use in standardization of blood haemoglobin measurements. Int J Lab Hematol. 2010;32(2):139-141. https://doi.org/10.1111/j.1751-553X.2009.01196.x
  12. Lippi G, Luca Salvagno G, Montagnana M, Brocco G, Cesare Guidi G. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006;44(3):311-316.
  13. Lippi G. Chapter six-systematic assessment of the hemolysis index: pros and cons. Adv Clin Chem. 2015;71:157-170.
  14. Petinos P. Laboratory management of haemolysed samples - results of an RCPAQAP survey [Internet]. Australasia: RCPA; 2017 [cited 2017 September 18]. Available from: https://www.aacb.asn.au/documents/item/3438.1000_Laboratory_management_of_haemolysed_samples_results_of_an_RCPAQAP_survey_-_Ms_Penny_Petinos.pdf.
  15. Kang H. How to understand and conduct evidence-based medicine. Korean J Anesthesiol. 2016;69(5):435-445. https://doi.org/10.4097/kjae.2016.69.5.435
  16. Frank JJ, Bermes EW, Bickel MJ, Watkins BF. Effect of in vitro hemolysis on chemical values for serum. Clin Chem. 1978; 24(11):1966-1970.
  17. Lowe G, Stike R, Pollack M, Bosley J, O'brien P, Hake A, et al. Nursing blood specimen collection techniques and hemolysis rates in an emergency department: analysis of venipuncture versus intravenous catheter collection techniques. J Emerg Nurs. 2008;34(1):26-32. https://doi.org/10.1016/j.jen.2007.02.006
  18. Burns ER, Yoshikawa N. Hemolysis in serum samples drawn by emergency department personnel versus laboratory phlebotomists. Lab Med. 2002;33(5):378-380. https://doi.org/10.1309/PGM4-4F8L-2P1M-LKPB
  19. Sung YH, Hwang MS, Lee JH, Park HD, Ryu KH, Cho MS, et al. A comparison of the rates of hemolysis and repeated blood sampling using syringe needles versus vacuum tube needles in the emergency department. J Korean Acad Nurs. 2012;42(3):443-451. https://doi.org/10.4040/jkan.2012.42.3.443
  20. Heyer NJ, Derzon JH, Winges L, Shaw C, Mass D, Snyder SR, et al. Effectiveness of practices to reduce blood sample hemolysis in EDs: a laboratory medicine best practices systematic review and meta-analysis. Clin Biochem. 2012;45(13):1012-1032. https://doi.org/10.1016/j.clinbiochem.2012.08.002
  21. Mccaughey EJ, Vecellio E, Lake R, Li L, Burnett L, Chesher D, et al. Current methods of haemolysis detection and reporting as a source of risk to patient safety: a narrative review. Clin Biochem Rev. 2016;37(4):143-151.
  22. Petinos P, Gay S, Badrick T. Variation in laboratory reporting of haemolysis-a need for harmonisation. Clin Biochem Rev. 2015;36(4):133-137.
  23. Park JG, Joo KW. Evaluation of interfering substances in routine chemistry tests using toshiba tba-c8000 chemistry analyzer. Korean J Clin Lab Sci. 2011;43(1):6-11.
  24. Dimeski G, Clague AE, Hickman PE. Correction and reporting of potassium results in haemolysed samples. Ann Clin Biochem. 2005;42(2):119-123. https://doi.org/10.1258/0004563053492739
  25. Lippi G, Luca Salvagno G, Blanckaert N, Giavarina D, Green S, Kitchen S, et al. Multicenter evaluation of the hemolysis index in automated clinical chemistry systems. Clin Chem Lab Med. 2009;47(8):934-939. https://doi.org/10.1515/CCLM.2009.218
  26. Vermeer HJ, Thomassen E, de Jonge N. Automated processing of serum indices used for interference detection by the laboratory information system. Clin Chem. 2005;51(1):244-247. https://doi.org/10.1373/clinchem.2004.036301
  27. Plebani M, Panteghini M. Promoting clinical and laboratory interaction by harmonization. Clin Chim Acta. 2014;432:15-21. https://doi.org/10.1016/j.cca.2013.09.051
  28. Price CP. Evidence-based laboratory medicine: is it working in practice? Clin Biochem Rev. 2012;33(1):13-19.
  29. KCDC. Establishment of standardization system in national reference laboratory [Internet]. Cheongju: KCDC; 2017 [cited 2017 September 18]. Available from: https://www.gov.kr/portal/service/serviceInfo/PTR000051043.