• Title/Summary/Keyword: Terzaghi soil

Search Result 57, Processing Time 0.024 seconds

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.

A Study on the Self-Weight Consolidation Procedure of Very Soft Ground Reclaimed by Dredging Clayey Soil (연약한 준설 매립 점성토지반의 자중압밀 과정에 관한 연구)

  • 김형주;오근엽
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • This study is performed for the development of a field monitoring and test technique both of self-weight and hydraulic consolidation by which the soil parameters of dredge-reclaimed clay can be obtained effectively. The field monitoring development and tests mentioned above make it possible to reproduce the process of the self-weight consolidation from settling to reclaimed soft ground. The experimental research is mainly focussed on the characteristics of self-weight consolidation of dredged clayey soil. And theoretical study has pointed out the limits in the application of Terzaghi's one dimensional consolidation theory in interpreting reclaimed clayey ground. Furthermore, a finite difference analysis has been made on the basis of Mikasa s self-weight consolidation theory which takes the problems of Terzaghi's theory into consideration. The relationships between specific volume, effective stress, and the coefficient of permeability of Kunsan reclaimed clayey soil have been obtained by laboratory tests. On the other hand, through the field monitoring, pore pressure, total pressure, and water levels have been measured after pouring. The results of these experiments have been analyzed, and compared with those from Terzaghi's method and the finite difference analysis of Mikasa's self-weight consolidation theory. In conclusion, the measured settlements is comparatively consistent with Mikasa's self-weight consolidation theory rather than Terzaghi's consolidation theory.

  • PDF

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Numerical Analysis of Tunnel Lining under Loosening Load (수치해석을 통한 이완하중에 따른 터널 라이닝의 거동 분석)

  • Park, Jung-Jin;Kim, Yong-Min;Hwang, Taik-Jean;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.35-45
    • /
    • 2011
  • Cost effective design and construction are necessary to establish the design concept of tunnel lining. Loosening load acting on the concrete lining is compared with Terzaghi tunnel theory and numerical analysis. It is analyzed under the condition of weathered rock and soil with varying in-situ stress ratio ($K_0$). Based on the result, loosening load calculated by Tcrzaghi tunnel theory is much greater than numerical analysis results. And the load calculated in weathered soil is lager than weathered rock condition. As in-situ stress ratio increases, the stress acting on the tunnel lining decreases in Terzaghi theory rapidly, whereas there is little effect in numerical analysis.

Estimation of Consolidation Period for Dredged Soil by Mikasa Theory (Mikasa 압밀이론에 의한 준설토지반의 압밀기간 산정에 관한 연구)

  • 주재우;정규향;조진구
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.299-306
    • /
    • 2003
  • Dredged soil experiences large settlement during consolidation because of its high water contents. Large settlement alters the thickness of the consolidation layer greatly with time. However, the consolidation theory proposed by Terzaghi assumes the thickness of the consolidation layer to stay constant. Mikasa has developed a more rational theory considering the change of thickness of consolidation layer but it is not well applied at the site. In this study consolidation tests have been performed using Rowe cell for the four dredged clay samples with a water content of 100%, 120%, 133% and 150%. From the test results compression index characteristics and coefficient of consolidation characteristics have been investigated. Coefficients of consolidation obtained by Terzaghi's and Mikasa's theories, have been evaluated and compared with each other. When Mikasa theory is applied in the field design, the period to reach the required degree of consolidation has been reduced compared with the result by Terzaghi theory because the time factor $T_{v}$ by Mikasa theory decreases with increasing of final strain of consolidation layer, Calculation method consolidation time by Mikasa theory was concisely explained for its practical use.e.

Stability Evaluation of Shallow Foundation by Plate Bearing Test (PBT에 의한 직접기초의 안정성 평가)

  • Ki Wan-Seo;Joo Seung-Wan;Kim Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.423-433
    • /
    • 2005
  • For the design of spread foundation and the stability evaluation, we compared and analyzed it for theoretical, empirical bearing capacity formulas, and various settlement computation formulas, by conducting the plate bearing test at the site of A and B, which consisted of gneiss weathered soil. In addition, we considered the effective method of stability evaluation by carrying out the plate bearing test carried out on the ground consisted of weathering soil of gneiss. Consequently, it was found out that the allowablebearing capacity by the theoretical formula of Terzaghi was too excessive in comparison with the result of the plate bearing test and the Terzaghi-Peck method, which was used widely domestically in designing the spread foundation. It was more effective for a stable design. As a result of the plate bearing test carried out, on the ground consisted of weathering soil. It was found that reviewing the stability by the bearing capacity calculated with load-settlement curve. It is evaluated in a safer side than the point of view of the settlement.

The Behavior of Earth Retaining Structures Using p-y Curve with Coupling (p-y 특성곡선의 Coupling을 고려한 토류벽의 거동해석)

  • Kim, Soo Il;Jeong, Sang Seom;Chang, Buhm Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.553-563
    • /
    • 1994
  • The behavior of earth retaining structure was investigated by considering coupling between soil springs in elasto-plastic soil. For the computation of soil reaction, soil on both sides of walls was simplified as e1asto-plastic springs, and the required horizontal displacement to mobilize Terzaghi's active and passive state was applied to construct the p-y curve. Reliability on computer program developed is verified through the comparison between prediction and in-situ measurements. Based on the results obtained, it is found that the prediction by using coupling between soil springs simulates well the general trend observed by the in-situ measurements. It is also found that the horizontal displacement required for the active state gives a very small effect to the displacement of walls in the sandy soil.

  • PDF

An Experimental Study on the Settlement Characteristics of Soft Ground in the Central West Coast Region (서해안 중부지역 연약지반의 침하특성 분석을 위한 실험적 연구)

  • Kim, Joon-Seok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.786-793
    • /
    • 2021
  • Purpose: An experiment was conducted to analyze the characteristics of the settlement of soft clay soil in the central region of the west coast of Korea, which has a high silt content and is difficult to predict settlement due to various stress histories. Method: Field experiments were conducted for three cases. The settlement amount of the subsidence plate was measured in each case, and the following conclusions were drawn by analyzing Terzaghi's one-dimensional consolidation settlement amount, both the hyperbolic method and the Asaoka method. Result: The predicted value by Terzaghi was analyzed to be the largest in all cases, and it was predicted to be 111% to 187% larger than the subsidence plate settlement value. That is, the subsidence plate settlement value, which is the amount of settlement of the actual ground, showed a settlement of 53.4~89.9% compared to the predicted value of Terzaghi. Therefore, it was analyzed that the expected settlement of the Terzaghi method in the clay soft ground of the central west coast of Korea is more than the actual settlement. Conclusion: It was analyzed that the Asaoka method and the hyperbolic method presented relatively similar results, and in practice, predicting the settlement amount smaller than the actual settlement amount may cause a risk, so the hyperbola analysis method predicted 6~14% larger than the actual settlement amount can be used as a safety side.

A Study on Heaving Phenomenon by Model Test (실내모형실험을 통한 히빙 이론에 관한 연구)

  • Oak, Yong-Kwan;Im, Jong-Chul;Kwon, Jeong-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1144-1156
    • /
    • 2008
  • In this paper, heaving phenomenon is analyzed by laboratory tests. A laboratory test is consist of building soft clay foundation in plane-strain soil tank, construction of retaining wall, and excavation work. And range of shear strain, and destruction shape about soft clay foundation is compared, and analyzed with results of proposal formula. Using this study, safety factor is suggested for heaving phenomenon in the construction of wall on the soft clay. Actual theory is suggested by this suggested safety factor. There are various proposal formula for heaving phenomenon. For example, Terzaghi & Peck, Tschebotarioff, Bjerrum & Eide(Experience formula) and so on. Terzaghi & Peck's proposal formula is chosen, compared with laboratory test's result and analyzed in this study. A soft clay used in study is assumed homogeneous. A Depth of foundation is enough to observe shear strain by heaving phenomenon. Retaining wall is enough hard not to have vertical displacement.

  • PDF

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.