• Title/Summary/Keyword: Tensile test

Search Result 4,149, Processing Time 0.03 seconds

Study of the Compressive Behavior of Polypropylene-low Glass Fiber Compound and Thermoplastic Olefin under High Strain Rate (고 변형률 속도에서 폴리프로필렌 및 열가소성 올레핀 소재의 압축 거동에 대한 연구)

  • Lee, Se-Min;Kim, Dug-Joong;Han, In-Soo;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.38-41
    • /
    • 2022
  • In this study, the strain rate dependent tensile and compressive properties of PP-LGF and TPO was investigated under the high strain rate by using the Split Hopkinson Pressure Bar (SHPB). The SHPB is the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between 100 s-1 and 10,000 s-1. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In addition, to verify the strain data obtained from SHPB, the specimen was photographed with a high-speed camera and compared with the strain data obtained through the Digital Image Correlation (DIC).

Annealing Effect on the Mechanical Properties of Hot-Rolled Fe55Co17.5Ni10Cr12.5Mo5 High-Entropy Alloy (열간압연 된 Fe55Co17.5Ni10Cr12.5Mo5 고엔트로피합금의 소둔 조건에 따른 기계적 특성 변화)

  • Park, H.D.;Bae, D.H.;Won, J.W.;Moon, J.;Kim, H.S.;Seol, J.B.;Sung, H.;Bae, J.W.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Although the mechanical properties of high-entropy alloys depend on the annealing conditions, limited works were established to investigate the annealing effect on the mechanical properties of Mo-added high-entropy alloys. Therefore, in the present work, the annealing effects on the microstructural evolution and mechanical properties of Mo-added high-entropy alloy were investigated. As a result, incomplete recrystallization from the limited annealing time not only suppresses deformation-induced phase transformation during cryogenic tensile test but also induces a deformation instability that results into the ductility reduction compare with the fully recrystallized sample. This result represents adjustment of annealing time is useful to control both transformation-induce plasticity and deformation instability of high-entropy alloys, and this can be applied to control the mechanical properties of metallic alloys by combining pre-straining and subsequent annealing.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

Study on Prediction of Compressive Strength of Concrete based on Aggregate Shape Features and Artificial Neural Network (골재의 형상 특성과 인공신경망에 기반한 콘크리트 압축강도 예측 연구)

  • Jeon, Jun-Seo;Kim, Hong-Seop;Kim, Chang-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.135-140
    • /
    • 2021
  • In this study, the concrete aggregate shape features were extracted from the cross-section of a normal concrete strength cylinder, and the compressive strength of the cylinder was predicted using artificial neural networks and image processing technology. The distance-angle features of aggregates, along with general aggregate shape features such as area, perimeter, major/minor axis lengths, etc., were numerically expressed and utilized for the compressive strength prediction. The results showed that compressive strength can be predicted using only the aggregate shape features of the cross-section without using major variables. The artificial neural network algorithm was able to predict concrete compressive strength within a range of 4.43% relative error between the predicted strength and test results. This experimental study indicates that various material properties such as rheology, and tensile strength of concrete can be predicted by utilizing aggregate shape features.

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

Assessment of Cryogenic Material Properties of R-PUF Used in the CCS of an LNG Carrier

  • Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.217-231
    • /
    • 2022
  • Reinforced polyurethane foam (R-PUF), a material for liquefied natural gas cargo containment systems, is expected to have different mechanical properties depending on its stacking position of foaming as the glass fiber reinforcement of R-PUF sinks inside R-PUF under the influence of gravity. In addition, since R-PUF is not a homogeneous material, it is also expected that the coordinate direction within this material has a great correlation with the mechanical properties. So, this study was conducted to confirm this correlation with the one between the mechanical properties and the stacking position. In particular, in this study, R-PUF of 3 different densities (130, 170, and 210 kg/m3) was used, and tensile, compression, and shear tests of this material were performed under 5 temperatures. As a result of the tests, it was confirmed that the strength and modulus of elasticity of the material increased as the temperature decreased. Specifically, the strength and modulus of elasticity in the Z direction, which was the lamination direction, tended to be lower than those in the other directions. Finally, the strength and elastic modulus of different specimens of the material found at the bottom of their lamination compared to the specimens with these properties found at positions other than their lamination bottom were evaluated. Further analysis confirmed that as the temperature decreased, hardening of R-PUF occurred, indicating that the strength and modulus of elasticity increased. On the other hand, as the density of R-PUF increased, a sharp increase in strength and elastic modulus of R-PUF was observed.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Applicability of the Tensile Test Performance Evaluation Baseline for Ground Anchors (지반앵커에 대한 인장시험 성능평가 기준선의 적용성 고찰)

  • Kim, Dae Gun;Park, Tae Kwang;Park, Lee Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.75-84
    • /
    • 2022
  • Currently, tension ground anchors are divided into temporary and permanent based on their purpose and period of use, and their performance evaluations are presented separately. Therefore, applying the current performance evaluation's upper and lower limits to practice seems reasonable. However, because compression ground anchors have been mainly used as permanent, performance evaluation corresponding to permanent is conducted without distinction between temporary and permanent. This evaluation is a strict standard for ground anchors used as temporary, including the removal type. Because of examining the existing performance evaluation for the compression ground anchor, the lower limit can be applied without distinguishing between the temporary and permanent. However, the upper limit should be presented separately for the temporary and permanent. In applying the upper limit, it is necessary to adjust the upper limit of the anchor considering the anchored ground condition (rock or soil), the period of use, and particularly whether the load-displacement curve maintains the elastic state.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.