• Title/Summary/Keyword: Tensile test

Search Result 4,149, Processing Time 0.04 seconds

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

An Experimental Study on the Mechanical Properties of Steel Fiber Reinforced Fly Ash.Polyester Resin Composites (강섬유 보강 플라이애쉬.폴리에스터 수지복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;조영찬
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.156-166
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of steel fiber reinforced polyester resin composites utilizing industrial waste products(fly ash) are presented in this paper. The composites using steel fiber, fly ash, unsaturated polyester resin, styrene monomer, catalyst (cobalt octate) and accelerator(methyl ethyl ketone peroxide), fine and coarse aggreates were prepared using various mixing conditions. As the test results show. the mechanical and physical properties, such as the compressive, tensile and flexural strengths, and the setting shrinkage of fly ash$\cdot$polyester resin composites were improved considerably by increasing the fly ash-binder ratio. And the workability of steel fiber reinforced fly ash$\cdot$polyester resin composites was reduced with increasing the fly ash-binder ratio and steel fiber content. Also, the compressive, flexural strength and toughness of the composites were remarkably increased by increasing steel fiber content.

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.

Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites (고인성 섬유보강 무시멘트 복합체의 기초 배합 및 역학 실험)

  • Cho, Chang-Geun;Lim, Hyun-Jin;Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cement has been traditionally used as a main binding material of high ductile fiber reinforced cementitious composites. The purpose of this paper is to investigate the feasibility of using alkali-activated slag and polyvinyl alcohol (PVA) fibers for manufacturing high ductile fiber reinforced cementless composites. Two mixture proportions with proper flowability and mortar viscosity for easy fiber mixing and uniform fiber dispersion were selected based on alkali activators. Then, the slump flow, compression, uniaxial tension and bending tests were performed on the mixes to evaluate the basic properties of the composites. The cementless composites showed an average slump flow of 465 mm and tensile strain capacity of approximately 2% of due to formation of multiple micro-cracks. Test results demonstrated a feasibility of manufacturing high ductile fiber reinforced composites without using cement.

Thermal and Mechanical Properties of Alumina Cementitious Composite Materials (알루미나 시멘트에 기반한 복합재료의 열역학적 특성)

  • Yang, In-Hwan;Lee, Jung-Hwan;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • The mechanical and thermal properties of high temperature aluminate cementitious thermal storage materials were investigated in this paper. Alumina cement was used as basic binder and the effect of the replacement of fly ash, silica fume, calcium sulfo-aluminate and graphite for alumina cement was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling, and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results show that the residual compressive strengths of mixtures with alumina cement only, or alumina cement and silica fume were greater than those of the others. Additionally, the specific heat of mixture with graphite was largest in all the mixtures used in the study. The results of this study could be used to provide realistic information for material properties in thermal energy storage concrete in the future.

Behavior of Weathered Soil Reinforced with Waste Tire Mat (폐타이어 매트로 보강된 풍화토지반의 거동)

  • Yoon, Yeo-Won;Cheon, Sung-Han;Heo, Seung-Bum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.37-46
    • /
    • 2005
  • Waste tires can be used not only for reinforcement material due to its high capacity against tensile force but also effective for massive treatment. In order to use waste tire as reinforcing material Tread mat using tire treads only was made. Plate load tests on the embankment of decomposed granite soil reinforced with Tread mat and geogrids were conducted for comparison with the test results, respectively. And numerical analyses were performed to see the stress and stain around the reinforced material. Tread mat showed bearing capacity increase and the amount was bigger than that of commercial geogrids. Finite element analysis showed decrease of stress beneath the reinforced material and stress distribution. Finally Tread mat was proposed to use for soil reinforcement as a means of massive treatment of discarded tire.

  • PDF

Experimental Study on Deflection Evaluation of KCI specification and Eurocode 2 (콘크리트 구조 설계기준과 Eurocode 2의 처짐 산정에 관한 실험적 고찰)

  • Lee, In-Ju;Kim, Tae-Wan;Oh, Seok-Mim;Kim, Jun-Won;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.141-144
    • /
    • 2008
  • Deflection in terms of serviceability of reinforced concrete structures is considered as one of significant factor. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia at cracked section, which has been known as Branson's equation in ACI. Branson's equation was derived from statistical analysis of maximum deflection of flexural members, but is somewhat weak in no reflection of bond characteristics between reinforced bars and concrete, such as tension stiffening effect. Therefore, present code creates difference from actual deflection. In this study, experiments about deflection of RC beams was completed to compare domestic standard and Eurocode 2, which calculates deflection considering tension stiffening effect. Four RC beams were built and tested, and initial modulus of elasticity and tensile strength of concrete used in the test was calculated by each design standard.

  • PDF

Fatigue Strength in Aged Turbine Rotor Steel (시효 열화시킨 터빈 로터강의 피로강도에 관한 연구)

  • 서창민;허정훈;이해무;서덕영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.77-87
    • /
    • 1996
  • The estimation of the remaining life for the aged components in power plant as well as chemical and peroleum plants has been recently coberned. The raw materials used in this syudy are the 1Cr-1Mo-0.25V rotor steel which intensified P and S compositions along with the nominal compositions of ASTM A470 standard. Five kinds of specimens with the different degradation levels were prepared by isothermal aging teat treatment at $630^{\circ}C$ The mechanical properties and fatigue strength of virgin and aged 1Cr-1Mo-0.25V rotor steel have been inbestigated through the hardness, tensile, fatigue test, SEM fractograph and EDS analysis at room temperature. Thus, the data of aged specimens were compared with those of virgin specimen to evaluate the aging effects. The main results obtained in this study are as follows; The decrease of the hardness due to degradation was distinguished until 50, 000hrs simulated service time. And is was confirmed that the considerable amount of P, Mn, Cr and S was precipitated at the grain boundary of aged material through the SEM and EDS analysis. The fatigue strength of 25, 000, 50, 000, 75, 000 and 100, 000hrs aged material was decreased 29.5%, 24.4%, 28.6%, 35.7% than that of virgin material at $10^7$ cycles of room temperature. The major cracks of virgin and aged materials initiated at the inclusions including Si, P and Mn compositions which were located at the outer periphery of the specimen.

  • PDF

A case of Asbestosis, Pleural Effusion and Lung Cancer Caused by Long-Term Occupational Asbestos Exposure (석면분진폭로에 의하여 석면폐증과 늑막삼출액 폐암이 합병된 1예)

  • Jung, Jang-Young;Ahn, Hyeong-Sook;Kim, Jee-Won;Kim, Kyung-Ah;Yun, Im-Goung;Kim, Han-Wook;Choi, Young-Mee;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.6
    • /
    • pp.651-657
    • /
    • 1994
  • Asbestos is widely used in the textile, asbestos cement, construction products, friction material, paper products, insulation products, chemical and plastic products because of its heat resistance, flexibility, tensile strength, and texturability. It is now generally recognized that longterm and excessive inhalation of asbestos dust causes asbestosis, lung cancer, malignant mesothelioma and malignancies in other organs such as cancer of gastrointestinal tract, leukemia, lymphoma. Although eighty thousand tons of asbestos has been annually consumed since 1979 in korea, it has not been reported asbestos and lung cancer by asbestos dust so far, while a case of mesothelioma was officially diagnosis as a occupational disease at 1993. We experienced firstly a case of asbestosis and lung cancer caused simultanously by occupational asbestos exposure 11 years, which was confirmed by chest x-ray, pulmonary function test, chest CT and HRCT, bronchoalveolar lavage, and gallium scan. And so We present a case of asbestosis, pleural effusion and lung cancer with a review literature.

  • PDF