• Title/Summary/Keyword: Tensile bond strength

Search Result 478, Processing Time 0.025 seconds

Effect of Latex and Mineral Additive on Durability of Remicon LMC (라텍스와 광물질 첨가제가 레미콘LMC (Remicon Latex Modified Concrete) 내구성에 미치는 영향)

  • Choi, So Yeong;Choi, Yoon Suk;Heo, Hyeong Seok;Yang, Eun Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1743-1751
    • /
    • 2014
  • It is well known that latex modification can lead to enhancement compressive and flexural performance, tensile bond strength, chloride penetration resistance and freezing-thawing resistance for concrete. For these, many studies for LMC pavement have been widely conducted more than those for conventional pavement concrete. However, due to several problems such as noise and construction cost, new approaches for LMC have been executed to improve the performance of LMC. Recently, Remicon LMC was developed in order to solve the problems of LMC. In this study, the durability of Remcion LMC was compared with latex and mineral additive mixing ratio. From the results, when latex and mineral additive were mixed in Remicon LMC, compressive, flexural and bond strength were satisfied with Korea Highway Construction Guide Specification. And, it showed that the qualitative effect of latex and mineral additive mixing ratio on the durability of Remicon LMC was investigated experimentally. Also, the latex mixed in Remicon LMC must be at least 8%, in order to ensure the durability equivalent or higher than conventional LMC.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Effect of phytic acid as an endodontic chelator on resin adhesion to sodium hypochlorite-treated dentin

  • Mohannad Nassar;Noriko Hiraishi;Md. Sofiqul Islam;Maria JRH. Romero;Masayuki Otsuki;Junji Tagami
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2020
  • Objectives: Phytic acid (IP6), a naturally occurring agent, has been previously reported as a potential alternative to ethylenediaminetetraacetic acid (EDTA). However, its effect on adhesion to sodium hypochlorite (NaOCl)-treated dentin and its interactions with NaOCl have not been previously reported. Thus, in this study, the effects of IP6 on resin adhesion to NaOCl-treated dentin and the failure mode were investigated and the interactions between the used agents were analyzed. Materials and Methods: Micro-tensile bond strength (µTBS) testing was performed until failure on dentin treated with either distilled water (control), 5% NaOCl, or 5% NaOCl followed with chelators: 17% EDTA for 1 minute or 1% IP6 for 30 seconds or 1 minute. The failed specimens were assessed under a scanning electron microscope. The reaction of NaOCl with EDTA or IP6 was analyzed in terms of temperature, pH, effervescence, and chlorine odor, and the effects of the resulting mixtures on the color of a stained paper were recorded. Results: The µTBS values of the control and NaOCl with chelator groups were not significantly different, but were all significantly higher than that of the group treated with NaOCl only. In the failure analysis, a distinctive feature was the presence of resin tags in samples conditioned with IP6 after treatment with NaOCl. The reaction of 1% IP6 with 5% NaOCl was less aggressive than the reaction of the latter with 17% EDTA. Conclusions: IP6 reversed the adverse effects of NaOCl on resin-dentin adhesion without the chlorine-depleting effect of EDTA.

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test (실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가)

  • Sangrae Lee;Seunghwan Seol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.19-24
    • /
    • 2023
  • Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.

The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 전단 저항 기구와 변형 능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

A Study on the Development of Automatic Welding System using Solor Energy (태양에너지를 이용한 자동용접 시스템 개발에 관한 연구)

  • Kim I.S.;Kim O.S.;Son J.S.;Seo J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.532-533
    • /
    • 2006
  • In this research work attempts were made to study the bonding of thermoplastics with adhesives using solar energy. In order to study the curing behaviour necessary experiments were conducted under varying conditions of temperature, exposure time and power. The cured samples were then studied under the optical microscope before subjecting to tensile testing in order to study their mechanical properties. The fracture surfaces were further studied under the Scanning Electron Microscopy in order to study the microstructural changes that are taken place during curing. From the present study it is evident that curing under higher solar energy temperature, generally improves bond strength and quality of the adhesive joints when compared to other modes of curing process expect the microwave curing process.

  • PDF

Some properties of paper and wet-end characteristics with Polyvinylamine

  • Son, Dong-Jin;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2005.11a
    • /
    • pp.259-263
    • /
    • 2005
  • This study was performed to introduce recently developed Polyvinylamine as a wet-end process improving aids and paper properties improving aids. As a retention and drainage aids, cationicity of Polyvinylamine was a very important factor of BCTMP and ONP stock condition. As a dry tensile strength aids, The hydrogen bond of acrylamide functionality and hydroxyl functionality of the pulp was a very important factor of LBKP stock condition and cationicity of Polyvinylamine was a very important factor of BCTMP and ONP stock condition.

  • PDF

Strategy of LMC Application at Bridge Overlay in Korea (LMC 교면포장공법의 국내 도입 방안)

  • 김기헌;윤경구;박상일;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1063-1068
    • /
    • 2000
  • Latex modified concrete (LMC) has grown to be accepted as a standard material of construction overlaying bridge decks in America due to its superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design. LMC overlays have been service in excellence for 30 years on thousands of bridge in U.S.A. This may, also, prolong the life cycle of bridge deck once it is adopted in Korea. The self-contained, mobile, continuous mixer is most appropriate particularly for concrete quality assurance. Assuring quality on a bridge deck overlay project should begin in the design phase and continue after the construction is completed. Quality should be the concern of everyone involved-owner, designer, and contractor.

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete (중량 자철석 콘크리트의 유동성 및 역학적 특성에 미치는 보통중량 굵은골재 치환율의 영향)

  • Mun, Jae-Sung;Mun, Ju-Hyun;Yang, Keun-Hyeok;Lee, Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • The objective of this study is to evaluate the workability and various mechanical properties of heavyweight magnetite concrete and examine the reliability of the design equations specified in code provisions. The main parameters investigated were the water-to-cement ratio and substitution level of normal-weight coarse aggregate (granite) for magnetite. The oven-dried unit weight of concrete tested ranged between 2446 and $3426kg/m^3$. The measured mechanical properties included compressive strength development, stress-strain curve, splitting tensile strength, moduli of elasticity and rupture, and bond stress-slip relationship of concrete. Test results revealed that the initial slump of heavyweight magnetite concrete increased as the substitution level of normal-weight coarse aggregate increases. The substitution level of normal-weight coarse aggregate had little influence on the compressive strength and tensile resistance capacity of heavyweight concrete, while it significantly affected the modulus of elasticity and stress-strain curves of such concrete. The design equations of ACI 349-06 and CEB-FIP provisions mostly conservatively predicted the mechanical properties of heavyweight magnetite concrete, but the empirical equations for modulus of elasticity and splitting tensile strength need to be modified considering the unit weight of concrete.