• 제목/요약/키워드: Tensile bond strength

검색결과 478건 처리시간 0.035초

초고성능 콘크리트(UHPC)의 부착특성에 관한 연구 (Bond Characteristics of Ultra High Performance Concrete)

  • 국경훈;신현오;곽임종;윤영수
    • 콘크리트학회논문집
    • /
    • 제22권6호
    • /
    • pp.753-760
    • /
    • 2010
  • 초고성능 콘크리트(ultra high performance concrete, UHPC)는 종래의 보통 콘크리트와 다른 새로운 재료로써 높은 강도와 향상된 인성을 그 특징으로 한다. 이러한 새로운 재료의 활용을 위하여 이 연구에서 초고성능 콘크리트의 부착 성능을 평가하고자 하였다. 수정된 RILEM 방법을 사용하여 초고성능 콘크리트와 이형 철근의 인발실험(pull-out test)을 수행하였으며 보통 콘크리트와 비교하여 5~10배에 달하는 부착강도를 확인하여 기존의 설계 기준에 비하여 현저하게 감소한 정착길이와 피복 두께를 제안하였다. 700 MPa급 고장력 철근의 실험 결과의 비교로부터 초고성능 콘크리트에서 고강도 철근 활용의 유효성을 확인하였다. 강연선의 응력전달길이 측정실험을 통하여 현재 전달길이 기준이 UHPC의 경우 매우 보수적이라는 것을 확인하였다. 또한 유한요소해석을 통하여 실험 결과를 검증하였다.

양면겹치기 동시경화조인트의 피로특성에 영향을 미치는 설계변수에 관한 연구 (Design parameters on the fatigue characteristics of a co-cured double lap joint)

  • 신금철;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.5-8
    • /
    • 2002
  • The use of the co-cured joining method for composite structures is attractive due to several benefits. However, since the design stress level in cyclic loads is often smaller than the joint strength obtained from the static tensile load test, it is important to establish proper fatigue design criteria. Although some researchers have reported on co-cured joints, there are only a few papers published on the fatigue characteristics of co-cured joints. In this paper, the effect of bond parameters on the fatigue characteristics of a steel-composite co-cured double lap joint under cyclic tensile loads was experimentally investigated. We considered the surface roughness of the steel adherend and the stacking sequence of the composite adherend as bond parameters. A fatigue failure mechanism of the co-cured double lap joint was explained systematically by investigating the surfaces of failed specimens.

  • PDF

고해부하가 종이의 물성에 미치는 영향 (The Effect of Refining Load on the Paper Properties)

  • 김용식;원종명
    • 펄프종이기술
    • /
    • 제33권1호
    • /
    • pp.38-44
    • /
    • 2001
  • The effects of refining load on the paper properties were investigated. HwBKP, SwBKP and SwUKP were refined with PFI mill at the load of 3.33 N/mm and 6.00 N/mm. Higher Scott bond was obtained at the higher refining load for three pulp used in this study. However any changes in the light scattering coefficient with the change of refining load were not observed. Although the effect of refining load on the formation index for SwUKP was not observed, higher refining load gave the better formation for HwBKP and SwBKP. The fiber mass and fiber crowding factor were not affected by the refining load. Higher apparent density and tensile index were obtained with the higher refining load. However, the higher refining load did not improve the tensile index at the same apparent density. The tear index was decreased with the increase of refining load.

  • PDF

플라즈마 용사층에 발생하는 응력해석 (Analysis of thermal stresses developed in plasma sprayed layer)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.58-68
    • /
    • 1990
  • The formation of thermal stresses by plasma spraying is generally considered as adverse. Therefore, the knowledge of stress distribution in the deposited layer during and after plasma spraying will be of special interest. In this study finite difference heat transfer analysis and finite element stress analysis were carried out to predict the change of stress distribution in the plasma coated layer with the variations of preheat temperature, number of scan, particle size, and bond coat. The results of the numerical analysis were as follows: 1) Transient stresses developed in the coated layer were up to the level of yiedl strength at the temperature. 2) The tensile stresses were developed in the deposited layer and the surface of the substrate, but the compressive stresses were developed in the rest of the substrate. 3) Transient and residual stresses were significantly affected by the preheat temperature. 4) The variations of temperature of powder particle and number of torch scan changed tensile stress distribution, but made no difference on the magnitude of the stresses. 5) Bond coated layer reduced the stree level of deposited layer.

  • PDF

구상형 실리카 필러가 실험적 복합레진의 물성에 미치는 효과 (EFFECT OF SPHERICAL SILICA FILLER ON THE PHYSICAL PROPERTIES OF EXPERIMENTAL COMPOSITES)

  • 강승훈;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.88-99
    • /
    • 1999
  • The purpose of this study was to investigate the physical properties of experimental composite resins made with the spherical and crushed fillers. The 14 experimental composite resins containing 0, 5, 10, 15, 20 and 25%(w/w) in spherical filler group and 0, 10, 20, 30, 40, 50, 60 and 70%(w/w) in crushed filler group, incorporated in a Bis-GMA matrix (Aldrich Co., USA), were made with 1% ${\gamma}$-methoxy silane treated fillers. The polymer matrix was made by dissolving 0.7%(w/w) of benzoyl peroxide(Janssen Chemical Co. Japan) in methacrylate monomer, whereupon 0.7%(v/v) N,N-dimethyl-p-toluidine(Tokyo Kasei Co. Japan) was added to the monomer. The weight percentage of each specific particle size distribution could be determined from a knowledge of the specific gravity, the weight(w/w), and corresponding volume %(v/v) of the filler sample in resin monomer. In crushed silica group and spherical silica group, the diametral tensile strengths and compressive strengths were measured with Instron Testing Machine(No.4467), and analyzed in 14 experimental composite resins made by filler fractions. The shear bond strength of 14 experimental composite resins to bovine enamel was measured with universal testing machine(Instron No.4467). The fracture surfaces were sputter-coated with a gold film and investigated by SEM. The results were as follows; 1. The diametral tensile strength was tendency to increase in crushed silica group, but not in spherical silica group. The highest diametral tensile strength was found in 20% filler fractions of two groups. 2. The compressive strength was higher in 15%(w/w) and 20%(w/w) in spherical silica group than in crushed silica group, but not in spherical silica group. 3. The significant correlation was noticed in increase in shear bond strength in crushed silica group, but not in spherical silica group. 4. The significantly highest shear bond strength was noticed in 50% filler concentration in crushed silica group, and in 15% filler concentration in spherical silica group, it was not significant in relation. 5. In crushed silica group, cut surface of resin matrix and the interface between resin and filler is obvious. In spherical silica group, fractures that occurred through the filler particles were round in shape.

  • PDF

Effect of Silicon Infiltration on the Mechanical Properties of 2D Cross-ply Carbon-Carbon Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • 제5권3호
    • /
    • pp.108-112
    • /
    • 2004
  • Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.

  • PDF

와동벽에서 접착제의 두께가 미세인장 결합강도에 미치는 영향 (The effect of adhesive thickness on microtensile bond strength to the cavity wall)

  • 이화언;김현철;허복;박정길
    • Restorative Dentistry and Endodontics
    • /
    • 제32권1호
    • /
    • pp.9-18
    • /
    • 2007
  • 이 연구의 목적은 와동벽에서 다른 위치에서의 상아질 접착제의 두께를 평가하고, 이런 다양한 접착제의 두께와 미세 인장 강도 사이의 관계를 평가하기 위한 것이다. 여섯 개의 인간 대구치에 모든 상아질 면이 노출되도록 I급 와동을 형성하였다 3개의 치아는 filled adhesive ($Clearfil^{TM}$ SE bond)를 와동 내에 도포하였고, 다른 3개의 치아는 unfilled adhesives ($Scotchbond^{TM}$ Multi Purpose)를 도포하였다. 형광 현미경을 이용하여 접착층의 형태와 두께를 관찰하였다. 접착제의 두께는 수직 와동벽을 따라 와동 변연, 와동벽 1/2, 와동 내각의 세 지점에서 측정되었다. $Scotchbond^{TM}$ Multi Purpose와 $Clearfil^{TM}$ SE bond가 와동 변연과 와동벽 1/2, 와동 내각에서의 접착제의 두께를 재현하여 미세 인장 결합 강도를 측정하였다. 이 실험의 결과에서 두 가지 상아질 접착제 모두에서 와동 내각에서의 접착제의 두께가 와동 변연과 와동벽 1/2위치에서의 두께보다 두꺼웠으며, 와동 내각의 두꺼운 접착제의 미세 인장 결합 강도는 와동 변연과 와동벽 1/2에서의 얇은 접착제 두께의 미세 인장 결합 강도보다 유의성 있게 높게 나타났다.

Using Mean Residual Life Functions for Unique Insights into Strengths of Materials Data

  • Guess Frank M.;Zhang Xin;Young Timothy M.;Leon Ramon V.
    • International Journal of Reliability and Applications
    • /
    • 제6권2호
    • /
    • pp.79-85
    • /
    • 2005
  • We show how comparative mean residual life functions (MRL) can be used to give unique insights into strengths of materials data. Recall that Weibull's original reliability function was developed studying and fitting strengths for various materials. This creative comparing of MRL functions approach can be used for regular life data or any time to response data. We apply graphical MRL's to real data from tests of tensile strength of high quality engineered wood.

  • PDF

콘크리트 교면에 적용되는 시트방수재의 접합 인장강도 확인 (Overlap Tensile Strength testing of Waterproofing Sheet used in Concrete Bridges)

  • 안기원;강효진;선윤숙;김천학;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.335-336
    • /
    • 2018
  • This study discusses the development of asphalt based waterproofing sheet applied on the blind side of the concrete substrate. The inorganic coating membrane is applied on top of the waterproofing sheet surface for protection, and adhesive bond to the concrete substrate surface is secured via hydration reaction the cement. The study reveals the experimental results of the overlap section tensile strength to observe the effects of the adhesion strength of this material.

  • PDF

철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members)

  • 김상식;이진섭;이승배;장수연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF