• Title/Summary/Keyword: Temporal envelope

Search Result 23, Processing Time 0.022 seconds

TEMPORAL VARIATIONS OF THE GLOBAL SEISMIC PARAMETERS OF HD 49933 OVER A MAGNETIC CYCLE

  • Kim, Ki-Beom;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.4
    • /
    • pp.129-137
    • /
    • 2021
  • It has been established that the acoustic mode parameters of the Sun and Sun-like stars vary over activity cycles. Since the observed variations are not consistent with an activity-related origin, even Sun-like stars showing out-of-phase changes of mode frequencies and amplitudes need to be carefully studied using other observational quantities. In order to test whether the presumed relations between the global seismic parameters are a signature of the stellar activity cycle, we analyze the photometric light curve of HD 49933 for which the first direct detection of an asteroseismic signature for activity-induced variations in a Sun-like star was made, using observations by the CoRoT space telescope. We find that the amplitude of the envelope significantly anti-correlates with both the maximum frequency of the envelope and the width of the envelope unless superflare-like events completely contaminate the light curve. However, even though the photometric proxy for stellar magnetic activity appears to show relations with the global asteroseismic parameters, they are statistically insignificant. Therefore, we conclude that the global asteroseismic parameters can be utilized in cross-checking asteroseismic detections of activity-related variations in Sun-like stars, and that it is probably less secure and effective to construct a photometric magnetic activity proxy to indirectly correlate the global asteroseismic parameters. Finally, we seismically estimate the mass of HD 49933 based on our determination of the large separation of HD 49933 with evolutionary tracks computed by the MESA code and find a value of about 1.2M and a sub-solar metallicity of Z = 0.008, which agrees with the current consensus and with asteroseismic and non-asteroseismic data.

Impact of Sea Surface Scattering on Performance of QPSK (해면산란이 QPSK 성능에 미치는 영향)

  • Xue, Dandan;Seo, Chulwon;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1818-1826
    • /
    • 2014
  • Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.

Speed Estimation of a Mobile Station Using the Undecimated Discrete Wavelet Transform (웨이블릿을 이용한 속도 측정)

  • Lee, Chang-Soo;Song, Hun-Guen;Yoo, Kyung-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.841-844
    • /
    • 2001
  • This paper introduces a new technique for estimating the speed of a mobile station in a wireless system. The proposed method is based on the feature extraction of the received signal envelope. The undecimated discrete wavelet transform via lifting captures local minimum points of the received signal, which is used for the speed estimation. This technique requires neither knowledge of the average received power of the nonstationary signal nor adaptation of a temporal observation window, in contrast to other speed estimators given in the literature. Simulations show that the proposed speed estimator tracks the variable speed of the mobile station.

  • PDF

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

Voice Expression using a Cochlear Filter Model

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.20-28
    • /
    • 1996
  • Speech sounds were practically applied to a cochlear filter which was simulated by an electrical transmission line. The amplitude of the basilar membrane displacement was calculated along the length of the cochlea in temporal response. And the envelope of the amplitude according to the length was arranged for each discrete time interval. The resulting time response of the speech sound was then displayed as a color image. Five vowels such as a, e, I, o, u were applied and their results were compared. The whole procedure of the visualization method of the speech sound using the cochlear filter is described in detail. The filter model response to voice is visualized by passing the voice through the cochlear filter model.

  • PDF

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers for Surface-profile Metrology (펨토초 레이저를 이용한 형상 측정용 비동일 광경로 저결 맞음 간섭계)

  • Oh, Jeong-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.102-110
    • /
    • 2006
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source for enhanced precision surface-profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows unequal-path scanning interferometry, which is not feasible with white light. Second, the high spatial coherence of femtosecond pulse lasers enables large-sized optics to be tested in nonsymmetric configurations with relatively small-sized reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

Theory of High Resolution TEM Image Formation: Coherence (2) (TEM 관련 이론해설(7): 투과전자현미경의 고분해능 영상이론: 결맞음 (2))

  • Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this review, the important ideas of coherence theory are introduced. The transfer function and damping envelopes of the microscope due to temporal and spatial coherence are described. The passbands and the condition of Scherzer focus are discussed in associated with the resolution of transmission electron microscope. The characterization of coherence is also described.

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers (펨토초 레이저를 이용한 비동일 광경로 저결맞음 간섭계)

  • Oh J.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.204-207
    • /
    • 2005
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source fer enhanced precision surface profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows performing unequal-path scanning interferometry that is not feasible with white light. Second, high spatial coherence of femtosecond pulse lasers enables to test large size optics in non-symmetric configurations with relatively small size reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

  • PDF

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

Statistical Characteristics of Bottom Backscattering by a Moving Source at a Shallow Water Site (천해에서 이동음원으로 측정한 해저면 후방산란의 통계적 특성)

  • Park, J.S.;Jurng, M.S.;Chang, D.H.;Choi, J.Y.;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.18-23
    • /
    • 1996
  • Fluctuation statistics of scattering strength are not only important because they impact the performance of active sonar systems, but also because they may provide insight into the major scattering process. In this article, analysis of the statistical characteristics of bottom backscattering, measured in shallow water, are presented. The slowly moving experimental sonar was operated at 30kHz to gather data over the bottom. Spatial and temporal correlation functions of the signal amplitudes were measured. The distribution function and probability of false alarm function of the detected envelope of widebeam and narrowbeam signals were measured. An attempt was made to compare the results with existing theoretical models. The result suggests that the statistical characteristics of bottom backscattering fluctuation of moving source is differ from that of fixed source.

  • PDF