• Title/Summary/Keyword: Template-free synthesis

Search Result 21, Processing Time 0.025 seconds

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan;Li, San Xi;Han, Chong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3196-3202
    • /
    • 2012
  • Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

Versatile Strategies for Fabricating Polymer Nanomaterials with Controlled Size and Morphology

  • Yoon, Hyeon-Seok;Choi, Moon-Jung;Lee, Kyung-Jin;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.85-102
    • /
    • 2008
  • The development of reliable synthetic routes to polymer nanomaterials with well-defined size and morphology is a critical research topic in contemporary materials science. The ability to generate nanometer-sized polymer materials can offer unprecedented, interesting insights into the physical and chemical properties of the corresponding materials. In addition, control over shape and geometry of polymer nanoparticles affords versatile polymer nanostructures, encompassing nanospheres, core-shell nanoparticles, hollow nanoparticles, nanorods/fibers, nanotubes, and nanoporous materials. This review summarizes a diverse range of synthetic methods (broadly, hard template synthesis, soft template synthesis, and template-free synthesis) for fabricating polymer nanomaterials. The basic concepts and significant issues with respect to the synthetic strategies and tools are briefly introduced, and the examples of some of the outstanding research are highlighted. Our aim is to present a comprehensive review of research activities that concentrate on fabrication of various kinds of polymer nanoparticles.

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles

  • Kim, Taekeun;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2917-2921
    • /
    • 2014
  • Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.

Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol

  • Li, Jiajia;Li, Liangqing;Yang, Jianhua;Lu, Jinming;Wang, Jinqu
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.353-360
    • /
    • 2019
  • ZSM-5 membrane was prepared on tubular macroporous ${\alpha}$-alumina support using a different synthesis route. The effects of organic template agent and Si/Al ratio of the synthesis gel on morphology, structure, and separation performance of the ZSM-5 membrane used for dehydration of isopropanol were investigated. High water perm-selectivity ZSM-5 membrane with a thickness of about $3.0{\mu}m$ and a low Si/Al ratio of 10.1 was successfully prepared from organotemplate-free synthesis gel with a molar composition of $SiO_2$ : $0.050Al_2O_3$ : $0.21Na_2O$ : NaF : $51.6H_2O$ at $175^{\circ}C$ for 24 h. The ZSM-5 membrane exhibited high pervaporation performance with a flux of $3.92kg/(m^2{\cdot}h)$ and corresponding separation factor of higher than 10,000 for dehydration of 90 wt.% isopropanol/water mixture at $75^{\circ}C$.

Development of a Rapid and Productive Cell-free Protein Synthesis System

  • Kim, Dong-Myung;Choi, Cha-Yong;Ahn, Jin-Ho;Kim, Tae-Wan;Kim, Nam-Young;Oh, In-Suk;Park, Chang-Gil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.235-239
    • /
    • 2006
  • Due to recent advances in genome sequencing, there has been a dramatic increase in the quantity of genetic information, which has lead to an even greater demand for a faster, more parallel expression system. Therefore, interest in cell-free protein synthesis, as an alternative method for high-throughput gene expression, has been revived. In contrast to in vivo gene expression methods, cell-free protein synthesis provides a completely open system for direct access to the reaction conditions. We have developed an efficient cell-free protein synthesis system by optimizing the energy source and S30 extract. Under the optimized conditions, approximately $650{\mu}g/mL$ of protein was produced after 2h of incubation, with the developed system further modified for the efficient expression of PCR-amplified DNA. When the concentrations of DNA, magnesium, and amino acids were optimized for the production of PCR-based cell-free protein synthesis, the protein yield was comparable to that from the plasmid template.

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

Template-free Hydrothermal Synthesis of High Phase Purity Mordenite Zeolite Particles Using Natural Zeolite Seed for Zeolite Membrane Preparation (제올라이트 분리막 제조를 위한 유기주형 없는 고순도 모데나이트 제올라이트 입자 수열합성에 관한 연구)

  • Lee, Du-Hyoung;Alam, Syed Fakhar;Lee, Hye-Rheon;Sharma, Pankaj;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, the natural mordenite (MOR) zeolite seeds were used for the synthesis of high purity mordenite crystals. The effect of seed concentration and crystallization time on the phase purity and surface morphology of MOR crystals has also been reported. The diffraction, elemental and scanning analysis of MOR zeolite particles obtained from 100 g hydrothermal solution batch containing 3 g natural seed, hydrothermally treated at $140^{\circ}C$ for 72 h reveal the high phase-purity of as-synthesized sample having crystals of uniform size ($1-2{\mu}m$). Moreover, high seed concentration leads to the production of mesoporous MOR particles composed of needle shape primary nano crystallites. The gases adsorption performances of as-synthesized MOR particle were carried out at $25^{\circ}C$ and 0-1 bar. Surprisingly, MOR particles show good adsorption potential for $CO_2$ (97.19 mg/g) compared to other gases. Thus it confirms that high purity MOR particles can be synthesized without using any organic template which gives an advantage of separation performance at lower price.

Electrolytic Synthesis of Cobalt Nanorods without Using a Supporting Template (템플릿 없이 전해 합성된 코발트 나노 로드)

  • Kim, Seong-Jun;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.319-325
    • /
    • 2014
  • Cobalt nano-rods were fabricated using a template-free electrochemical-deposition process. The structure of cobalt electro-deposits strongly depends on the electrolyte composition and on the density of the applied current. In particular, as the content of boric acid increased in the electrolyte, deposits of semi-spherical nuclei formed, and then grew into one-dimensional nano-rods. From analysis of the electro-deposits created under the conditions of continuous and pulsed current, it is suggested that the distribution of the active species around the electrode/electrolyte interface, and their transport, might be an important factor affecting the shape of the deposits. When transport of the active species was suppressed by lowering the deposition temperature, more of the well-defined nano-rod structures were obtained. The optimal conditions for the preparation of well-defined nano-rods were determined by observing the morphologies resulting from different deposition conditions. The maximum height of the cobalt nano-rods created in this work was $1{\mu}m$ and it had a diameter of 200 nm. Structural analysis proved that the nano-rods have preferred orientations of (111).