DOI QR코드

DOI QR Code

Template-free Hydrothermal Synthesis of High Phase Purity Mordenite Zeolite Particles Using Natural Zeolite Seed for Zeolite Membrane Preparation

제올라이트 분리막 제조를 위한 유기주형 없는 고순도 모데나이트 제올라이트 입자 수열합성에 관한 연구

  • Lee, Du-Hyoung (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University) ;
  • Alam, Syed Fakhar (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University) ;
  • Lee, Hye-Rheon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University) ;
  • Sharma, Pankaj (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University) ;
  • Han, Moon-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology(GEST), Chungnam National University)
  • 이두형 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • ;
  • 이혜련 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 한문희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2016.10.05
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

In this study, the natural mordenite (MOR) zeolite seeds were used for the synthesis of high purity mordenite crystals. The effect of seed concentration and crystallization time on the phase purity and surface morphology of MOR crystals has also been reported. The diffraction, elemental and scanning analysis of MOR zeolite particles obtained from 100 g hydrothermal solution batch containing 3 g natural seed, hydrothermally treated at $140^{\circ}C$ for 72 h reveal the high phase-purity of as-synthesized sample having crystals of uniform size ($1-2{\mu}m$). Moreover, high seed concentration leads to the production of mesoporous MOR particles composed of needle shape primary nano crystallites. The gases adsorption performances of as-synthesized MOR particle were carried out at $25^{\circ}C$ and 0-1 bar. Surprisingly, MOR particles show good adsorption potential for $CO_2$ (97.19 mg/g) compared to other gases. Thus it confirms that high purity MOR particles can be synthesized without using any organic template which gives an advantage of separation performance at lower price.

본 연구에서는 고순도의 모데나이트(Mordenite) 입자를 합성하기 위하여 천연 제올라이트를 시드로 사용하여 시드의 농도 및 수열합성 시간에 따른 천연 제올라이트 시드가 합성에 미치는 영향을 고찰하였다. 그 결과 시드가 입자의 형성에 큰 영향을 끼치는 것을 확인할 수 있었고 시드를 3 g/100 g batch 주입하여 $140^{\circ}C$에서 72시간 동안 수열합성을 진행하였을 때 $1-2{\mu}m$ 사이즈의 고순도 모데나이트 입자를 합성할 수 있었다. 이를 통해 모데나이트 입자의 성장 기구를 규명할 수 있었으며, 모데나이트 입자 형성에 있어 시드는 첫째, 구형 모데나이트 전구체 형성 자리 공급의 역할과, 둘째 모데나이트 원료 물질 소스 역할을 한다는 것을 알 수 있었다. 합성된 모데나이트 입자의 가스 흡착량 분석 결과 $CO_2$ 기체의 흡착량이 97.19 mg/g로 다른 가스들에 비해 비교적 높은 흡착성능을 보였으며, $CO_2/H_2$의 선택도가 가장 우수한 것으로 나타났다. 따라서 이러한 결과들을 바탕으로 용도에 맞는 고순도 상의 모데나이트 입자를 합성할 수 있음을 확인하였고 보다 낮은 가격으로 우수한 분리성능을 갖는 분리막 소재개발에 활용할 수 있을 것이라 판단된다.

Keywords

References

  1. R. M. Barrer, "Hydrothermal chemistry of zeolites", Academic Press (1982).
  2. D. W. Breck, "Zeolite molecular sieves", Wiley, NY (1974).
  3. H. V. Bekkum, E. Flanigen, and J. Jansen, "Introduction to zeolite science and practice", Elsevier Science Publishers B. V. (1991).
  4. A. Corma, "Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions", Chemical Reviews, 95, 559 (1995). https://doi.org/10.1021/cr00035a006
  5. J. Yu, X. Sun, T. Jin, N. Zhao, H. Guan, and Z. Hu, "Effect of Re on deformation and slip systems of a Ni base single-crystal superalloy", Mater. Sci. Eng. A, 458, 39 (2007). https://doi.org/10.1016/j.msea.2006.12.112
  6. K. Shiokawa, M. Ito, and K. Itabashi, "Crystal structure of synthetic mordenites", Zeolites, 9, 170 (1989). https://doi.org/10.1016/0144-2449(89)90021-3
  7. T. Sano, S. Wakabayashi, Y. Oumi, and T. Uozumi, "Synthesis of large mordenite crystals in the presence of aliphatic alcohol", Micro. Meso. Mater., 46, 67 (2001). https://doi.org/10.1016/S1387-1811(01)00285-2
  8. P. K. Bajpai, "Synthesis of mordenite type zeolite", Zeolites, 6, 2 (1986). https://doi.org/10.1016/0144-2449(86)90002-3
  9. A. A. Shaikh, P. N. Joshi, N. E. Jacob, and V. P. Shiralkar, "Direct hydrothermal crystallization of high-silica large-port mordenite", Zeolites, 13, 511 (1993). https://doi.org/10.1016/0144-2449(93)90227-T
  10. C. Shao, H. Y. Kim, X. Li, S. J. Park, and D. R. Lee, "Synthesis of high-silica-content mordenite with different $SiO_{2}/Al_{2}O_{3}$ ratios by using benzene-1,2-diol as additives", Mater. Lett., 56, 24 (2002). https://doi.org/10.1016/S0167-577X(02)00411-1
  11. J. E. Gilbert and A. Mosset, "Large crystals of mordenite and MFI zeolites", Mater. Res. Bull., 33, 997 (1998). https://doi.org/10.1016/S0025-5408(98)00081-6
  12. S. E. Park, J. S. Chang, H. S. Roh, and K. S. Chung, "Preparations and applications of zeolite membranes", Membr. J., 8, 177 (1998).
  13. S. J. Jung, J. G. Yeo, M. H. Han, and C. H. Cho, "A study on permeation of $CO_{2}-N_{2}-O_{2}$ mixed gases through a NaY zeolite membrane under permeate evacuation mode", Membr. J., 23, 352 (2013).
  14. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, and S. H. Hyun, "Secondary growth of sodium type faujasite zeolite layers on a porous ${\alpha}-Al_{2}O_{3}$ tube and the $CO_{2}/N_{2}$ separation", Membr. J., 17, 254 (2007).
  15. Z. Chen, Y. Li, D. Yin, Y. Song, X. Ren, J. Lu, J. Yang, and J. Wang, "Microstructural optimization of mordenite membrane for pervaporation dehydration of acetic acid", J. Membr. Sci., 411, 182 (2012).
  16. G. Li, E. Kikuchi and M. Matsukata, "Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane", Sep. Purif. Technol., 32, 199 (2003). https://doi.org/10.1016/S1383-5866(03)00035-2
  17. A. Navajas, R. Mallada, C. Tellez, J. Coronas, M. Menendez, and J. Santamaria, "Preparation of mordenite membranes for pervaporation of water-ethanol mixtures", Desalination, 148, 25 (2002). https://doi.org/10.1016/S0011-9164(02)00648-3
  18. A. Yoshida and K. Inoue, "Formation of faujasite-type zeolite from ground Shirasu volcanic glass", Zeolites, 6, 467 (1986). https://doi.org/10.1016/0144-2449(86)90031-X
  19. A. Yoshida, "Synthesis of high‐silica zeolite Y", ChemInform, 22 (1991).
  20. B. Lu, T. Tsuda, Y. Oumi, K. Itabashi, and T. Sano, "Direct synthesis of high-silica mordenite using seed crystals", Micro. Meso. Mater., 76, 1 (2004). https://doi.org/10.1016/j.micromeso.2004.07.008
  21. A. Lv, H. Xu, H. Wu, Y. Liu, and P. Wu, "Hydrothermal synthesis of high-silica mordenite by dual-templating method", Micro. Meso. Mater., 145, 80 (2011). https://doi.org/10.1016/j.micromeso.2011.04.027
  22. M. M. Mohamed, T. M. Salama, I. Othman, and I. A. Ellah, "Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template", Micro. Meso. Mater., 84, 84 (2005). https://doi.org/10.1016/j.micromeso.2005.05.017
  23. J. Song, L. Dai, Y. Ji, and F.-S. Xiao, "Organic template free synthesis of aluminosilicate zeolite ECR-1", Chem. Mater., 18, 2775 (2006). https://doi.org/10.1021/cm052593o
  24. B. O. Hincapie, L. J. Garces, Q. Zhang, A. Sacco, and S. L. Suib, "Synthesis of mordenite nanocrystals", Micro. Meso. Mater., 67, 19 (2004). https://doi.org/10.1016/j.micromeso.2003.09.026
  25. F. Hamidi, A. Bengueddach, F. Di Renzo, and F. Fajula, "Control of crystal size and morphology of mordenite", Cat. lett., 87, 149 (2003). https://doi.org/10.1023/A:1023439121921
  26. L. Zhang, S. Xie, W. Xin, X. Li, S. Liu, and L. Xu, "Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis", Mater. Res. Bull., 46, 894 (2011). https://doi.org/10.1016/j.materresbull.2011.02.018
  27. R. Thompson, H. Karge, and J. Weitkamp, "Molecular Sieves, Science and Technology", Springer-Verlag (1998).