• Title/Summary/Keyword: Temperature visualization

Search Result 354, Processing Time 0.022 seconds

Measurement of Temperature Field using Holographic and Speckle Visualization Techniques (홀로그래피/스페클 가시화를 이용한 온도분포 측정)

  • 백성훈;박승규;김철중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.371-374
    • /
    • 1995
  • The real-time holographic interferometer with a digital high-speed camera is applied to the visualization of transient temperature field. Collimated and diffused laser beams are used to the object beam according to the shape and transmittance of the phase object. Also, ESPI(Electronic Speckle Speckle Pattern Interferometer) technique is used to the visualization and quantitatie measurement of slow-varying temperature field. The experimental results obtained form these two techniques are discussed.

  • PDF

Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics (온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화)

  • Hahnsoll Rhee;Rhokyun Kwak
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.

A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization (전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구)

  • Min Gi, Chu;Ji Hong, Chung;Dong Kee, Sohn;Han Seo, Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

Analysis and Visualization of Temperature Field for Wafer Batch in Furnace (반응로 내 웨이퍼 배치의 온도장 분석 및 가시화)

  • Kang, Seung-Hwan;Lee, Seung Ho;Kim, Byeong Hoon;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • The temperature of the wafer batch in the furnace was calculated and its visualized temperature field was analyzed. The main heat transfer mechanisms from the heater wall to the wafers were radiation and conduction, and the finite difference method was used to analyze the complex heat transfer including those two mechanisms. The visualized temperature field shows that the direction of the heat flux in the wafer batch varies during the heating process, and the heat in the wafer batch diffuses faster by conduction within the wafer than by radiation between the wafers, in the condition of the constant temperature at the heater wall and cap.

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

Visualization of Temperature Distribution Deep Inside the Agar Gel Tissue Phantom Heated Using Moxibustion and 1064 nm Infrared Laser (쑥뜸과 1064 nm 파장의 근적외선 레이저로 가열된 아가젤 조직 팬텀 심부의 온도분포 가시화)

  • Cho, Ji-Yong;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.54-59
    • /
    • 2010
  • A laser moxibustion therapy device having effect similar to that of traditional moxibustion is being developed using 1064 nm infrared laser. The therapy device allows direct interaction of laser light with the tissue rendering temperature distribution both on the skin surface and deep under the skin. We made a device that could measure temperature of deep under the surface of agar gel tissue phantom using thermocouples. A thermal imaging camera was used to verify results from the temperature measurement device. We compared the characteristics of heat transfer inside the tissue phantom during moxibustion and laser irradiation. The temperature distribution measured by thermocouples was found to be similar to that of distribution given by thermal imaging camera.

PIV Measurement of Flow Inside an Automotive HVAC Module with Varying Temperature Baffle (온도조절 격판 변화에 따른 차량용 HVAC 내부 유동의 PIV속도장 측정 연구)

  • Ji, Ho-Seong;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • Air flow inside an automotive HVAC module has been investigated using a high-resolution PIV technique with varying the temperature operation mode. The PIV system consists of a 2-head Nd:YAG laser (125 mJ), a high-resolution CCD camera (2K$\times$2K), optics and a synchronizer. A real automotive HVAC module was used directly under real operating condition. Some casing parts of the HVAC module were replaced with transparent windows for capturing clear flow images with laser light sheet beam illumination. Time-averaged velocity fields were obtained for two different temperature control modes. Flow characteristics of the air-conditioned air flow inside the automotive HVAC system for the two temperature baffle conditions were evaluated.

A Study on the Measurement of Flame Visualization, Temperature and Soot for Diffusion Flame in a Diesel Engine Using High-Speed Camera (고속카메라를 이용한 디젤엔진내의 화염 가시화, 화염의 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.132-140
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of the flame was measured qualitatively. In the combustion chamber, in order to judge the affect that the swirl current has on the current ratio two heads with different ratios were used. Using a high speed camera, the results were analyzed using flame visualization. In order to measure the temperature and soot of the turbulent flames like diesel flames, two color methods were used to acquire temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine, which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of the soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames.

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Internal flow visualization of an evaporating droplet placed on heated metal plate (가열된 금속표면에 놓인 증발하는 액적의 내부유동 가시화)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study aims to visualize the Marangoni flow inside a droplet placed on heated hydrophobic surface and to measure its internal velocity field. The experimental result shows that the internal velocity increases with the increase of the plate temperature. In addition, the temperature difference induces the initial flow and drives the Marangoni circulation inside the droplet as soon as the evaporation starts (i.e. the thermal Marangoni flow). The fluorescence particles in the droplet trace two large-scale counter-rotating vortex pairs yielding the downwards flow along the vertical central axis. These vortex pairs gradually become small and move towards the contact line as time goes by, and this Marangoni flow sustains only for a half of the total evaporation time.