DOI QR코드

DOI QR Code

Internal flow visualization of an evaporating droplet placed on heated metal plate

가열된 금속표면에 놓인 증발하는 액적의 내부유동 가시화

  • Park, Chang-Seok (School of Mechanical Engineering, Pusan National University) ;
  • Lim, Hee-Chang (School of Mechanical Engineering, Pusan National University)
  • Received : 2016.11.09
  • Accepted : 2017.02.25
  • Published : 2017.04.30

Abstract

This study aims to visualize the Marangoni flow inside a droplet placed on heated hydrophobic surface and to measure its internal velocity field. The experimental result shows that the internal velocity increases with the increase of the plate temperature. In addition, the temperature difference induces the initial flow and drives the Marangoni circulation inside the droplet as soon as the evaporation starts (i.e. the thermal Marangoni flow). The fluorescence particles in the droplet trace two large-scale counter-rotating vortex pairs yielding the downwards flow along the vertical central axis. These vortex pairs gradually become small and move towards the contact line as time goes by, and this Marangoni flow sustains only for a half of the total evaporation time.

Keywords

References

  1. Scriven, L. E., Sternling, C. V., 1960, "The Marangoni Effects" Nature, Vol. 187, pp. 186-188. https://doi.org/10.1038/187186a0
  2. Wang, H. T., Wang, Zh. B., Huang, L. M., Mitra, A., Yan Y. S., 2001, "Surface Patterned Porous Films by Convection-Assisted Dynamic Self-Assembly of Zeolite Nanoparticles" Langmuir, Vol. 17, pp. 2572-2574. https://doi.org/10.1021/la0102509
  3. Truskett, V., Stebe, K. J., 2003, "Influence of Surfactants on an Evaporating Drop: Fluorescence Images and Particle Deposition Patterns" Langmuir, Vol. 19, pp. 8271-8279. https://doi.org/10.1021/la030049t
  4. Hu H. and Larson R. G., 2005, "Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet" Langmuir, Vol. 21, pp. 3972-3980 https://doi.org/10.1021/la0475270
  5. Xu, X. F., Luo, J. B., 2007, "Marangoni flow in an evaporating water droplet" Appl. Phys. Lett., Vol. 91, pp. 12410
  6. Girard, F., Antoni, M., Faure, S., Steinchen, A., 2008, "Influence of heating temperature and relative humidity in the evaporation of pinned droplets" Colloid Surf., Vol. 323, pp. 36-49. https://doi.org/10.1016/j.colsurfa.2007.12.022
  7. Girard, F., Antoni, M., Faure, S., Steinchen, A., 2006, "Evaporation and Marangoni Driven Convection in Small Heated Water Droplets" Langmuir, Vol. 22, pp. 11085-11091. https://doi.org/10.1021/la061572l
  8. Tam D., Arnim V., Mckinley G. h., and Hosoi A. e., 2009, "Marangoni convection in droplets on superhydrophobic surfaces," Journal of Fluid Mechanics, vol. 624, no. 1, pp. 101-123. https://doi.org/10.1017/S0022112008005053
  9. Mack, G. L., 1936, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles," The Journal of Physical Chemistry, Vo. 40(2), pp. 159-167. https://doi.org/10.1021/j150371a001
  10. Hu H. and Larson R. G., 2006, "Marangoni Effect Reverses Coffee-Ring Depositions" J. Phys. Chem. B, Vol. 110, pp. 7090-7094. https://doi.org/10.1021/jp0609232
  11. Cengel Y. A., imbala J. M., 2010,"Fluid Mechanics: Fundamentals and Applications, 2/e", McGraw-Hill Korea, Inc., pp. 59-61.
  12. Kang H.K., Lee S.J., Lee C.M., Kang I.S., 2004 "Quantitative visualization of flow inside an evaporating droplet using the ray tracing method." Meas Sci Technol Vol. 15, pp. 1104-1112. https://doi.org/10.1088/0957-0233/15/6/009
  13. Dugas, V., Broutin, J., & Souteyrand, E., 2005, "Droplet evaporation study applied to DNA chip manufacturing," Langmuir, Vol. 21(20), pp. 9130-9136. https://doi.org/10.1021/la050764y
  14. Kim, H., & Lim, H. C., 2015, "Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface," The Journal of Physical Chemistry B, Vol. 119(22), pp. 6740-6746. https://doi.org/10.1021/acs.jpcb.5b02975
  15. Frank, P. I., & David, P. D., 1996, Fundamentals of heat and mass transfer. School of Mechanical Engineering, Vol. 4, pp. 306.
  16. Oh, J. M., Ko, S. H., & Kang, K. H., 2008, "Shape oscillation of a drop in ac electrowetting," Langmuir, Vol. 24(15), pp. 8379-8386. https://doi.org/10.1021/la8007359
  17. Mack, G. L., 1936, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles," The Journal of Physical Chemistry, Vol. 40(2), pp. 159-167. https://doi.org/10.1021/j150371a001
  18. Kang, K. H., Lee, S. J., Lee, C. M., & Kang, I. S., 2004, "Quantitative visualization of flow inside an evaporating droplet using the ray tracing method," Measurement Science and Technology, Vol. 15(6), pp. 1104. https://doi.org/10.1088/0957-0233/15/6/009
  19. Tam, D., von ARNIM, V. O. L. K. M. A. R., McKinley, G. H., & Hosoi, A. E., 2009, "Marangoni convection in droplets on superhydrophobic surfaces," Journal of Fluid Mechanics, Vol. 624, pp. 101-123. https://doi.org/10.1017/S0022112008005053
  20. Matsumoto, T., Fujii, H., Ueda, T., Kamai, M., & Nogi, K., 2005, "Measurement of surface tension of molten copper using the free-fall oscillating drop metho," Measurement Science and Technology, Vol. 16(2), pp. 432. https://doi.org/10.1088/0957-0233/16/2/014
  21. Oh, J. M., Legendre, D., & Mugele, F., 2012, "Shaken not stirred-On internal flow patterns in oscillating sessile drops," EPL (Europhysics Letters), Vol. 98(3), pp. 34003. https://doi.org/10.1209/0295-5075/98/34003
  22. Brunet, P., Eggers, J., & Deegan, R. D., 2007, "Vibration-induced climbing of drops," Physical review letters, Vol. 99(14), pp. 144501. https://doi.org/10.1103/PhysRevLett.99.144501