Browse > Article
http://dx.doi.org/10.5407/jksv.2017.15.1.025

Internal flow visualization of an evaporating droplet placed on heated metal plate  

Park, Chang-Seok (School of Mechanical Engineering, Pusan National University)
Lim, Hee-Chang (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of the Korean Society of Visualization / v.15, no.1, 2017 , pp. 25-31 More about this Journal
Abstract
This study aims to visualize the Marangoni flow inside a droplet placed on heated hydrophobic surface and to measure its internal velocity field. The experimental result shows that the internal velocity increases with the increase of the plate temperature. In addition, the temperature difference induces the initial flow and drives the Marangoni circulation inside the droplet as soon as the evaporation starts (i.e. the thermal Marangoni flow). The fluorescence particles in the droplet trace two large-scale counter-rotating vortex pairs yielding the downwards flow along the vertical central axis. These vortex pairs gradually become small and move towards the contact line as time goes by, and this Marangoni flow sustains only for a half of the total evaporation time.
Keywords
Marangoni flow; Hydrophobic Surface; Deionized water; Flow Visualization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tam D., Arnim V., Mckinley G. h., and Hosoi A. e., 2009, "Marangoni convection in droplets on superhydrophobic surfaces," Journal of Fluid Mechanics, vol. 624, no. 1, pp. 101-123.   DOI
2 Mack, G. L., 1936, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles," The Journal of Physical Chemistry, Vo. 40(2), pp. 159-167.   DOI
3 Hu H. and Larson R. G., 2006, "Marangoni Effect Reverses Coffee-Ring Depositions" J. Phys. Chem. B, Vol. 110, pp. 7090-7094.   DOI
4 Cengel Y. A., imbala J. M., 2010,"Fluid Mechanics: Fundamentals and Applications, 2/e", McGraw-Hill Korea, Inc., pp. 59-61.
5 Kang H.K., Lee S.J., Lee C.M., Kang I.S., 2004 "Quantitative visualization of flow inside an evaporating droplet using the ray tracing method." Meas Sci Technol Vol. 15, pp. 1104-1112.   DOI
6 Dugas, V., Broutin, J., & Souteyrand, E., 2005, "Droplet evaporation study applied to DNA chip manufacturing," Langmuir, Vol. 21(20), pp. 9130-9136.   DOI
7 Kim, H., & Lim, H. C., 2015, "Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface," The Journal of Physical Chemistry B, Vol. 119(22), pp. 6740-6746.   DOI
8 Frank, P. I., & David, P. D., 1996, Fundamentals of heat and mass transfer. School of Mechanical Engineering, Vol. 4, pp. 306.
9 Oh, J. M., Ko, S. H., & Kang, K. H., 2008, "Shape oscillation of a drop in ac electrowetting," Langmuir, Vol. 24(15), pp. 8379-8386.   DOI
10 Mack, G. L., 1936, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles," The Journal of Physical Chemistry, Vol. 40(2), pp. 159-167.   DOI
11 Kang, K. H., Lee, S. J., Lee, C. M., & Kang, I. S., 2004, "Quantitative visualization of flow inside an evaporating droplet using the ray tracing method," Measurement Science and Technology, Vol. 15(6), pp. 1104.   DOI
12 Tam, D., von ARNIM, V. O. L. K. M. A. R., McKinley, G. H., & Hosoi, A. E., 2009, "Marangoni convection in droplets on superhydrophobic surfaces," Journal of Fluid Mechanics, Vol. 624, pp. 101-123.   DOI
13 Matsumoto, T., Fujii, H., Ueda, T., Kamai, M., & Nogi, K., 2005, "Measurement of surface tension of molten copper using the free-fall oscillating drop metho," Measurement Science and Technology, Vol. 16(2), pp. 432.   DOI
14 Oh, J. M., Legendre, D., & Mugele, F., 2012, "Shaken not stirred-On internal flow patterns in oscillating sessile drops," EPL (Europhysics Letters), Vol. 98(3), pp. 34003.   DOI
15 Brunet, P., Eggers, J., & Deegan, R. D., 2007, "Vibration-induced climbing of drops," Physical review letters, Vol. 99(14), pp. 144501.   DOI
16 Scriven, L. E., Sternling, C. V., 1960, "The Marangoni Effects" Nature, Vol. 187, pp. 186-188.   DOI
17 Wang, H. T., Wang, Zh. B., Huang, L. M., Mitra, A., Yan Y. S., 2001, "Surface Patterned Porous Films by Convection-Assisted Dynamic Self-Assembly of Zeolite Nanoparticles" Langmuir, Vol. 17, pp. 2572-2574.   DOI
18 Truskett, V., Stebe, K. J., 2003, "Influence of Surfactants on an Evaporating Drop: Fluorescence Images and Particle Deposition Patterns" Langmuir, Vol. 19, pp. 8271-8279.   DOI
19 Hu H. and Larson R. G., 2005, "Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet" Langmuir, Vol. 21, pp. 3972-3980   DOI
20 Xu, X. F., Luo, J. B., 2007, "Marangoni flow in an evaporating water droplet" Appl. Phys. Lett., Vol. 91, pp. 12410
21 Girard, F., Antoni, M., Faure, S., Steinchen, A., 2008, "Influence of heating temperature and relative humidity in the evaporation of pinned droplets" Colloid Surf., Vol. 323, pp. 36-49.   DOI
22 Girard, F., Antoni, M., Faure, S., Steinchen, A., 2006, "Evaporation and Marangoni Driven Convection in Small Heated Water Droplets" Langmuir, Vol. 22, pp. 11085-11091.   DOI