• Title/Summary/Keyword: Temperature fluctuation

Search Result 633, Processing Time 0.032 seconds

Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure (액체질소 분사 안정화를 통한 극저온가공 품질 향상)

  • Gang, Myeong Gu;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

A Research on Optimization of Lead-lag Controller Setpoint for Rod control system to prevent fluctuation for NPP (원전 제어봉제어계통 순시변동을 방지하기위한 지상-지연회로 설정치 최적화 연구)

  • Yoon, Duk-Joo;Lee, Jae-Yong;Kim, In-Hwan;Kim, Joo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1154
    • /
    • 2007
  • Fluctuation of control rod was experienced when plant was operating in normal operation mode in WH type NPPs. In order to cope with increased control rod fluctuation, the lead-lag controller setpoint for rod control system was optimized and resulted in increasing the margin of operation and minimizing unnecessary control rod movement. By optimization of the time constant, the margin of operation was increased by $1.5^{\circ}F$ and the control rod movement was not occurred due to mitigation of temperature fluctuation in loop. According to the mitigation of time constant, the margin of operation was increased but safety margin can be affected badly, so that the influences to FSAR design reference was evaluated. As the result of this evaluation, it satisfied the design reference of the existing safety analysis and was applied to NPP after obtaining the approval.

  • PDF

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

A Study on the Distribution and Time Dependent Change of Wood Temperature by Solar Radiation

  • Xu, Hui Lan;Kang, Wook;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • The fluctuation of physical properties in wood or wood composites is an important subject when the materials in building and construction. Sorption and desorption occur in wood when exposed to the open air, and the temperature distribution in wood can fluctuate as a result of changes in environmental temperature, solar radiation, humidity, and wind velocity. In this study, the temperature difference and fluctuation caused by outdoor environment among different wood species were analyzed using a numerical method. The effect on the process of heat transfer in wood caused by environmental factors was investigated using 1-dimensional partial differential equation with real boundary and initial conditions. The experimental data have been used to check the accuracy of programming code. Through analysis, it was found out that density and moisture content have a negative effect on thermal diffusivity of wood.

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea (진주만 해역 수온의 시공간적 변동 특성)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2015
  • Temporal and spatial variations of surface water temperature in Jinju Bay for the period of 2010~2011 were studied using the data from temperature monitoring buoys deployed at 17 stations in the south coast of Korea. Water temperature shows the maximum late in January and the minimum early in August. Seasonal variation of water temperatures at the north part of the bay is smaller than the middle and the south. In summer, the lowest and the highest of maximum water temperature are distributed around Jijok Channel which is located at the south of the bay. The fluctuations of water temperatures at Noryang and Daebang Channel are smaller than others because of vertical mixing caused by passage of strong tidal currents. Wind and strong currents affect on the stratification of the surface water layer near Daebang Channel. High temperatures come in frequently around the north area when eastward constant flows appear at neap tide as blowing westerly in the springtime at Noryang Channel. Spectral analyses of temperature records show significant peaks at 7~20 day periods at Noryang Channel, 7~20 day and semidiurnal at the west coast of Changsun Island and Jijok Channel and 7~20 day and diurnal at the middle of the bay. Temperature fluctuation at Noryang Channel shows high coherence and has leading phase with those at other stations in the bay. However, the phase of temperature fluctuation at Noryang Channel falls behind that at Daebang Channel. Daebang Channel has an influence on the temperature fluctuation only at the west and middle part of the bay. Cross-correlation analyses for the temperature fluctuation show that Jinju Bay could be classified into six areas; Noryang Channel, the area of convergence and divergence at the north, Daebang Channel, the west coast of Changsun Island, the mixing area at the middle of the bay and the south inside of the bay, respectively.

국가 지하수 관측망의 수위 및 온도 자료를 이용한 함양량 산정

  • 박창희;구민호;이대하;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.351-356
    • /
    • 2002
  • Groundwater recharge rate was estimated by applying the groundwater level fluctuation method utilizing Theis (1937) approach with specific yield estimation technique of Shevenell (1996) and the temperature method using observed data from National Groundwater Observation Stations. Results based on analysis of water level observation data of 10 alluvium wells reveal that the recharge rates for 5 wells of Kum river area range 3.7~25.0% and those for 5 wells of Nakdong river area range 3.6~21.7%. Results obtained from the temperature method based on water temperature data indicated that the upward flow resulted from evapotranspiration is dominant for 4 wells of the Kum river area and 5 wells of the Nakdong river area. The other wells showed the downward flow which is related to groundwater recharge in these areas.

  • PDF

A Study on the Sea Condition and Catch Fluctuation of Anchovy Gill Net in the Coastal Waters of Yosu (여수 연안 멸치 자망 어장의 해황과 어획량의 변동)

  • Joo, Chan-Soon;Kim, Yong-Ju;Kim, Dong-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.159-164
    • /
    • 1998
  • In order to investigate the relation between the environmental factors influencing on the fluctuation of fishing condition and the catch of anchovy in gill nets in the coastal waters of Yosu, five oceanographic factors, i.e., water temperature, salinity, chlorophyll-a and the catch of anchovy in gill nets are observed from June 6 to August 12 in 1993. The results obtained are summerized as follows: 1) The water temperature ranged from 16.$0^{\circ}C$ to 22.6$^{\circ}C$ and the salinity from 30.13$\textperthousand$ to 33.65$\textperthousand$. the water temperature and salinity showed no significant influence on the catch of anchovy, but the catch did not expose high values in low temperature and salinity. 2) The catch of anchovy increased with the amount of chlorophyll-a. It is therefore emphasized that the amount of chlorophyll-a is the greatest one of environmental factors influencing on the catch of anchovy.

  • PDF

Numerical Simulation of Thermal Fluctuation of Hot and Cold Fluids Mixing in a Tee Junction

  • Gao, Kai;Lu, Tao
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • In this work, mixing processes of hot and cold fluids of three different jet types are predicted by large-eddy simulation (LES) on FLUENT platform. Temperature at different positions of internal wall and mixing conditions of T-junctions at different times are obtained, then the simulated normalized mean and root-mean square (RMS) temperature, temperature contour and velocity vector of every case are compared. The results indicate that, the mixing regions in the tee junction is related to the jet type, and temperature fluctuations on the pipe wall in the type of the deflecting jet is the least.