• Title/Summary/Keyword: Temperature distribution measurement

Search Result 484, Processing Time 0.028 seconds

Measurement of Welding Residual Stress in a 25-mm Thick Butt Joint using Inherent Strain Method (고유변형도법에 의한 두께 25mm 맞대기용접부의 두께방향의 잔류응력측정)

  • Park, Jeong-Ung;An, Gyu-Baek;Woo, Wanchuck;Heo, Seung-Min
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.67-72
    • /
    • 2013
  • Overlay welding is carried out to improve the corrosion resistance, wear resistance and heat resistance on the surface of the chemical plant and steelmaking plant structures. In overlay welding, control of the bead size and the temperature distribution of weldment are particularly important because that is directly connected to the improvement of quality and productivity. The aim of this study is to model the welding heat source that is very useful to analyze the bead size and temperature distribution of weldment. To find the welding heat source model, numerical analyses are performed by using FE software MSC-marc.

비 등온 유한요소해석을 위한 접면열전달계수의 결정

  • 강연식;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.783-786
    • /
    • 1996
  • In the temperature analysis, the heat transfer between the workpiece and the die has an important influence upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundafy conditions. A t the contact surface of two materials with different temperature, this requires the knowledge of overall heat transfer coefficients. In order to evaluate the overall heat transfer coefficients, a technique is developed. This technique involves temperature measurement at the contact surface during hot upsetting operations and finite element computation to calcualte the overall heat transfer coefficient.

  • PDF

Study on the Development of Heat Recovery Ventilator (폐열회수형 환기장치 개발에 관한 연구)

  • Cho, Dong-Hyun;Lim, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.383-389
    • /
    • 2007
  • To evaluate the performance of heat exchanger with rotating porous plates, the experimental investigation was carried out under various conditions. With an equal interval of 18 mm inside the heat exchanger, the rotating porous plates are mounted. The hot and cold airs enter at opposite ends of heat exchanger and exchange heat each other. In order to measure the temperature distribution of the hot air side inside heat exchanger, the thermocouples are inserted between the plates. The first location of thermocouple is 10 mm downstream from the inlet of heat exchanger, and succeeding ten locations are aligned at an equal interval of 18 mm. As a result of the measurement, the temperature distribution inside heat exchanger was constant as the hot air temperature of inlet is low. It was found that the heat transfer rate does not depend on the variation of RPM at the lower temperature of inlet. The heat transfer rate at the higher temperature of inlet increased a little with the increase in RPM.

Sn-3.5Ag 솔더를 이용한 페리퍼럴 어레이 플립칩의 열 성능 분석

  • Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.270-277
    • /
    • 2003
  • Thermal performance of flip chip bonding with Sn-3.5Ag solder ball was studied. The temperature distribution was measured with IR(InfraRed) camera of 25 urn resolution. The measurement shows that most of the samples had much higher maximum temperature than average temperature. With central heater and 2.5 (W), the difference between maximum and average temperature is over $80^{\circ}C$. The distribution was influenced by the location of heater, the distance from heater to flip chip bonding, and the passivation opening of solder bumps. To reduce the maximum temperature, the bigger passivation opening, the smaller chip size, and the closer location of heater to flip chip bumps are preferrable.

  • PDF

Study on Mobile Broadband Coherent Anti-Stokes Raman Spectrometer For Combustion Diagnostics (연소진단용 이동형 광대역 코헤런트 반 스톡스 라만 분광기에 관한 연구)

  • Park, Chul-Woung;Park, Seung-Nam;Hahn, Jae-Won;Lee, Jong-Ung
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 1996
  • We construct a mobile broadband coherent anti-Stokes Raman spectroscopy system to measure the temperature of combustion gases. To improve the accuracy of CARS temperatures due to Stokes lasers, a modeless dye laser is constructed. A monochromator to disperse CARS spectra is also constructed in the spectrometer for easy portability. The accuracy of CARS temperature, measured in graphite tube furnace in reference to a radiation pyrometer, is better than 2 % from 1000 K to 2400 K. The CARS temperature error due to the variation of the spectral distribution of the modeless laser is measured to be less than 1.5 % during five hours operation. As a demonstration of combustion diagnosis, we applied the spectrometer to measure the temperature distribution of the propane air premixed flame.

  • PDF

Study on Optimal Arrangements of Laser Beams in Tunable Diode Laser Absorption Spectroscopy Based Tomography (TDLAST) (레이저흡수분광 토모그래피법에서의 레이저빔의 최적 배치에 관한 연구)

  • KIM, KYUNGWON;YOON, DONGIK;CHOI, DOOWON;CHO, GYEONGRAE;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.729-737
    • /
    • 2017
  • The measurement accuracy of Tunable Diode Laser Absorption Spectroscopy based Tomography (TDLAST) for the temperature and concentration fields are dependant upon the arrangement method of the used laser beams. This paper reports on the optimization of laser beam arrangements using phantom data. It has been verified that the measurement error of the TDLAST decreased with increase of laser beam numbers. Further, it has been confirmed that perpendicular arrangements between the horizontal and the vertical laser beams without additional diagonal laser beams shows the minimum measurement errors.

Temperature Distribution in Ethylene Diffusion Flames Based on Measurement Techniques;Comparison of Thermocouple and Tow-Color Pyrometry (측정방법에 따른 에틸렌 확산화염의 온도분포;열전대 및 이색법 측정 결과 비교)

  • Lee, Won-Nam;Na, Yong-Dae;Lee, Bum-Ky;Park, Seong-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.175-182
    • /
    • 2000
  • Flame temperatures were measured and compared using a rapid insertion technique and a two-color pyrometry with Abel inversion process in co-flow ethylene diffusion flames. The measured line-of-sight temperature showed very limited usefulness in understanding the detailed soot formation/oxidation process in a co-flow diffusion flame. The flame temperatures could be measured with reasonable accuracy for the soot laden regions in ethylene diffusion flames using two-color pyrometry with an Abel inversion technique. Two-color-pyrometry with Abel inversion was demonstrated as a useful temperature measurement technique for co-flow diffusion flames, expecially under pressure conditions, where a thermocouple is not applicable. The soot volume fraction could be also obtained using tow-color pyrometry with Abel inversion, which provides important information for understanding the soot formation/oxidation mechanism in diffusion flames.

  • PDF

Measurement and Numerical Analysis far Temperature near the Lockup Clutch (록업 클러치 주변의 온도 측정 및 수치 해석)

  • 고권현;유홍선;조성욱;이규봉
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.129-135
    • /
    • 2002
  • The present article deals with the measurement and the numerical calculations far the temperature distribution near the facing of the lockup clutch. The rotating telemetry system is Introduced for the estimation inside high-speed torque converter For the numerical calculation, the effect of the convective heat transfer is considered as well as the conduction to the solid. The estimation shows that the oil temperature near facing rapidly rises as the lockup clutch is engaged. The numerical results shows good agreements with the experimental values for the maximum temperature near the facing of the lockup clutch.

An Experimental Study on Laminar Flow Temperature Using Thermo-sensitive Liquid Crystal (감온액정을 이용한 층류유동의 온도장에 관한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.373-378
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of laminar water flow in a horizontal circular tube by using liquid crystal. A simultaneous measurement technique has been employed to measure the temperature field in a two-dimensional cross section of fluid flow. This study found the temperature distribution for Re =900~1,500 along longitudinal sections and the results appear to be physically reasonable. To determine some characteristics of the laminar flow, 2D PIV technique is employed for temperature measurement and liquid crystal is used for heat transfer experiments in water. The experimental rig was manufactured from an acryle tube. The test tube diameter of 25mm, and a length of 1200mm. The used algorithm is the gray level cross-correlation method by using Kimura et al. in 1986.

  • PDF

Analysis of Water Transport through Measurement of Temperature and Relative Humidity in PEMFC at OCV (개방회로 상태 PEMFC 내부 온도와 습도 측정을 통한 수분투과 분석)

  • KIM, TAEHYEONG;HAN, JAESU;YU, SANGSEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.353-362
    • /
    • 2022
  • In this study, water diffusion in proton exchange membrane fuel cell at open circuit voltage (OCV) was analyzed through experiment. First, the reliability of the micro-sensor (SHT31) was verified. It was concluded the micro-sensor has an excellent reliability at 60℃ and 70℃. After the sensor reliability test, the temperature and relative humidity measurement in bipolar-plate was conducted at OCV. To analyze water distribution and water flux, the temperature and relative humidity was converted into dew point. To the end, it was found water concentration affects water diffusion.