• Title/Summary/Keyword: Temperature and salinity distributions

Search Result 76, Processing Time 0.032 seconds

Numerical Simulation on Hydrodynamic Characterization Changes Associated with the Construction of Dikes and Dredging Operations in Saemangeum Lake (새만금호 내 방수제 공사 및 준설에 의한 수리동역학적 특성 변화 수치 모델링)

  • Oh, Chan-Sung;Choi, Jung-Hoon;Cho, Young-Kweon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1115-1129
    • /
    • 2013
  • The study area is located on the western coast, and the inner development construction has been ongoing since 2011. The purposes of current study are to effectively simulate and quantitatively predict a temporal and spatial distributions of water temperature and salinity due to the stages of inner development construction in saemangeum reclaimed area. The transient-state numerical modeling using EFDC model is done, and the numerical simulation results are validated reasonably by repetitive numerical model calibration procedures with respect to field measurements of water temperature and salinity. The spatial distributions of water temperature and salinity show similar trends before and after construction of the dikes. In spring season, the salinity has maximum value of 21 psu, while, in summer season, the salinity shows 7 psu in a whole modeling domain. Thus, it is clearly observed that salt water is replaced by freshwater. However, the salinity and temperature reach their initial conditions at the end of the year. The salinity after construction of the dikes is lower than that before construction of them at Mankyeong area. On the other hands, after construction of the dikes, the salinity after dredging operations is higher than that before dredging. Because drastical increasing of water volume in Saemangeum Lake leads to increasing of stagnation time at bottom layer, and salt water is easily intruded to the two estuaries. Therefore, it may be concluded that hydrodynamic characteristics on Saemangeum are dominated by either Mankyeong and Dongjin discharge or sluice gates in/out-flow amounts, and thus they must be properly considered when rigorous and reasonable predictions of water temperature and salinity according to the stages of inner development construction.

Evaluation of Temperature and Salinity Fields of HYCOM Reanalysis Data in the East Sea (HYCOM 재분석 자료가 재현한 동해 수온 및 염분 평가)

  • Hong, JinSil;Seo, Seongbong;Jeon, Chanhyung;Park, Jae-Hun;Park, Young-Gyu;Min, Hong Sik
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.271-286
    • /
    • 2016
  • We evaluate the temperature and salinity fields in the East Sea reproduced by the global ocean reanalysis data using HYbrid Coordinate Ocean Model (HYCOM for short). Temporal correlation of Sea Surface Temperature (SST) change between HYCOM and the Group for High Resolution Sea Surface Temperature (GHRSST) are higher in summer than winter. Though distributions of temperature and salinity in the HYCOM are similar to those from historical data (World Ocean Atlas 2013 V2), salinity in the HYCOM is lower (highter) in the region where the salinity is high (low). Temperature fields in the Ulleung basin of HYCOM are quite similar to those derived from Pressure-recording Inverted Echo Sounder (PIES), such as the correlation coefficient is higher than 0.7. This indicates that the HYCOM represents well the circulation and meso-scale phenomena in the Ulleung basin.

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF

Distributions of the Temperature and Salinity in Kamak Bay (가막만의 수온과 염분의 분포)

  • LEE Kyu-Hyong;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.25-39
    • /
    • 1990
  • The distributions of the temperature and salinity in Kamak bay which has two channels and three sea bottom topographic parts were studied by taking the detailed hydrographic data at the ebb and flood during four seasons from May, 1988 to Feb., 1989. The general pattern of the distributions of characteristics which the temperature and salinity has in Kamak bay is basically formed by the topography and sea water movement of the bay. The changes of these distributions by seasons mainly come from the heating and cooling of the sea surface and the increase of the run-off. The bay has three remarkable water masses and the their general characteristics are follows: the inner bay water has a stagnation character influenced by the inland and the concave of the sea bottom in the north west, Yosu harbor water has an estuary character of the low salinity caused by the run-off of Somjin river and Yon Tung brooklet in the north east, and the outer bay water has an out-sea character, as it is located near by the big mouth in the south of the bay. The distributions of those water masses at the ebb and flood show some different features due to the flow patterns, and the daily changes of oceanic conditions at the vicinity of Hangdae-ri are so big that it may influence the habitation and production of the living things in the bay.

  • PDF

Low-salinity Water and Circulation in Summer around Saemangeum Area in the West Coast of Korea (하계 서해안 새만금 연안역 주변 저염수와 순환)

  • 이상호;최현용;손영태;권효근;김영곤;양재삼;정해진;김종구
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2003
  • In the mid-west coast of Korea where Mankyung and Dongjin rivers discharge fresh water, Saemangeum tidal dyke of 33 km long is under construction to reclaim the very shallow estuary region of 41,000ha. Main source of freshwater in this coastal area is Keum River locating closely north of the dyke. At present, the dyke connected with Gogunsan-Gundo separates this area into three regions; northwestern, southwestern and eastern (Saemangeum) region of the dyke, and the water in Saemangeum region is exchanged through one gap in the northern dyke and two gaps in the southern dyke. We have observed distributions and structures of temperature and salinity to examine the summer circulation related with low-salinity water in this coastal area in 1998 and 1999. In the surface layer off the northern dyke a tongue-like distribution of low-salinity extends 60 km long from Keum River estuary mouth to the northwest, forming plume front bounded by offshore water. In the inner region of Saemangeum dykes salinity distributions show that two river waters are merged together and the low salinity water is deflected toward northern gap of the dyke. In the surface layer off the southern dyke we observed small tongue-like distribution of another low-salinity water extending to the north from Gomso Bay. Based on the analysis of distributions of low-salinity water and frontal structures, we can suggest an anticlockwise circulation of coastal water around the dyke, composed by the estuarine water outgoing from the inner region of the dyke through the northern dyke's gap and the inflow through two gaps of southern dyke from offshore. After completing the dyke construction, this coastal circulation around the dyke will be, however, changed because fresh water discharge of Mankyung and Dongjin rivers will be routed artificially and directly into the area offshore of the southern dyke.

Impact of Seawater Inflow on the Temperature and Salinity in Shihwa Lake, Korea (배수갑문 운용에 따른 시화호의 수온과 염분 변화)

  • Choi, Jung-Hoon;Kim, Kye-Young;Hong, Dae-Byuk
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.541-552
    • /
    • 2000
  • The variations of physical properties due to inflow of seawater by sluice gates operation were observed in Shihwa Lake. The distributions of salinity and temperature were investigated at 11 stations during February, 1997 to July, 1998. The salinity of water mass in Shihwa Lake before gate operation was ranged below 15psu and strong stratification due to inflow of seawater was observed at the depth of 11 m. In July 1997, temperature difference of 10^{\circ}C$ was occurred between the surface and bottom water due to strong solar radiation. During October 1997 to February 1998, inversion of temperature distribution, which the temperature of bottom water was higher than that of surface water, was observed. In July 1997, temperature, salinity, current speed and current direction were investigated by RCM-7 at St.3 for 56 days. When sea water was intruded in Shihwa Lake, the symmetric distribution of temperature and salinity was observed and it seems to be resulted from inflow of seawater with low temperature and high salinity. After January 1998, salinity of Shihwa Lake was increased over 30psu due to continuous gate operation and the stratification was weakened.

  • PDF

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF

Seasonal Variation of Oceanic Conditions in Suyoung Bay (수영만 해황의 계절적 변동 특성)

  • Kim, Dong-Sun;Cho, Kyu-Dae;Lee, Byung-Gul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.105-119
    • /
    • 1991
  • In order to study the seasonal variation in the physical properites in Suyoung Bay, we investigated the distributions of temperature, salinity, transparency and water color from May 1989 to April 1990. We also observed the tidal currents from February 27 to March 6 1990. There are conspicuous seasonal variation in water temperature and salinity. Water masses are characterized by two water types, i.e., one is influenced principally by river runoff and the other by the Tsushima Current. Transparency and water color increased gradually from the head of the bay to the mouth of the bay in all seasons. In winter, the transparency of water becomes minimum due to the enhanced vertical mixing.

  • PDF

Mean Characteristics of Temperature, Salinity and Chlorophyll-α at the Surface Water in the Northern East China Sea (동중국해 북부 해역 표층의 평균적 해황과 chlorophyll-α의 분포)

  • Choi, Yong-Kyu;Suh, Young-Sang;Seong, Ki-Tack;Yoon, Won-Duk;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • In order to investigate the effect of inflow of Yangze river on the distribution of chlorophyll-${\alpha}$, the results of serial oceanographic observation during 2000-2005 were used. The oceanographic conditions in the northern East China Sea is influenced by the Tsushima Warm Current and low saline water derived from the Yangze river. The distributions of these water masses vary significantly by the season in the northern East China Sea. The sea surface temperature and salinity were stable and concentrations of chlorophyll-${\alpha}$ were low in the eastern part of $126^{\circ}E$. On the contrary, the salinity was significantly influenced by the low saline water derived from Yangze river with the high concentrations of chlorophyll-${\alpha}$. It is suggested that the low saline water inflowed from the Yangze river affects high concentrations of chlorophyll-${\alpha}$ in the northern East China Sea in summer.