• Title/Summary/Keyword: Temperature Inversion

Search Result 302, Processing Time 0.024 seconds

Characteristics of the Oceanographic Environment in the Aleutian Basin of the Bering Sea during Spring (춘계 베링해 알류산 해분의 해양환경 특성)

  • Choi, Seok-Gwan;Oh, Taeg Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.201-215
    • /
    • 2013
  • The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

Electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature (극저온에서 나노스케일 무접합 p-채널 다중 게이트 FET의 전기적 특성)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1885-1890
    • /
    • 2013
  • In this paper, the electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature have been analyzed experimentally. The experiment was performed using a cryogenic probe station which uses the liquid Helium. It has been observed that the drain current oscillation at low drain voltage and cryogenic temperature was more pronounced in junctionless transistor than in accumulation mode transistor. The reason for more marked oscillation is due to the smaller electrical cross section area of the inversion channel which is formed at the center of silicon film in junctionless transistor. It was also observed that the drain current and maximum transconductance were increased as the measurement temperature increased. This is resulted from the increase of hole mobility and the decrease of the threshold voltage as the measurement temperature increases. The drain current oscillation due to the quantum effects can be occurred up to the room temperature when the device size scales down to the nanometer level.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

The Study on the Temperature Compensation of Ultrasonic Motor for Robot Actuator Using Fuzzy Controller (퍼지제어기를 이용한 로보트 액츄에이터용 초음파 모터의 온도 보상에 관한 연구)

  • 차인수;유권종;백형래;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.165-172
    • /
    • 1998
  • The electromechanical energy conversion conditioning and processing implementation in USM direct motion control system is generally divided into two power stages: the two-phase high-frequency ac power inversion stage for driving piezoelectric ceramic PZT transducer array off the USM stator and the mechanical thrust power conversion stage based on the frictional force between the piezo electric stator array and the rotary slider of the USM. However, the dynamic and steady-state mathematical modeling of the USM is extremely default from a theoretical point of view because it contains many complicated an nonlinear characteristics dependant on operation temperature. In +2$0^{\circ}C$~3$0^{\circ}C$, the operating characteristics of the USM has represented normal condition. But the other temperature, it has abnormal condition so that driving frequency, current and motor speed will be down. The recent USM has controller without temperature compensation. This study represents the fuzzy controller for speed compensation according to operating temperature by driving frequency.

Characteristics of Meteorological Variables in the Leeward Side associated with the Downslope Windstorm over the Yeongdong Region (영동지역 지형성 강풍과 관련된 풍하측 기상요소의 특징)

  • Cho, Young-Jun;Kwon, Tae-Yong;Choi, Byoung-Cheol
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.315-329
    • /
    • 2015
  • We investigated the characteristics of meteorological conditions related to the strong downslope wind over the leeward side of the Taebaek Mountains during the period 2005~2010. The days showing the strong wind exceeding $14ms^{-1}$ in Gangwon province were selected as study cases. A total of 15 days of strong wind were observed at Sokcho, Gangneung, Donghae, and Taebaek located over the Yeongdong region. Seven cases related to tropical cyclone (3 cases) and heavy snowfall (2 cases) and heavy rainfall (2 cases) over the Yeongdong region were excluded. To investigate the characteristics of the remaining 8 cases, we used synoptic weather chart, Sokcho radiosonde, Gangneung wind profiler and numerical model. The cases showed no precipitation (or ${\leq}1mm\;day^{-1}$). From the surface and upper level weather chart, we found the pressure distribution of southern high and northern low pattern over the Korean peninsula and warm ridge over the Yeongdong region. Inversion layer (or stable layer) and warm ridge with strong wind were located in about 1~3 km (925~700 hPa) over mountains. The Regional Data Assimilation and Prediction System (RDAPS) indicated that warm core and temperature ridge with horizontal temperature gradient were $0.10{\sim}0.23^{\circ}C\;km^{-1}$ which were located on 850 hPa pressure level above mountaintop. These results were summarized as a forecasting guidance of downslope windstorm in the Yeongdong region.

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018 (2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구)

  • Ahn, Bo-Young;Shim, Jae-Kwan;Kim, KyuRang;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.222-237
    • /
    • 2020
  • A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

The characterization of a barrier against Cu diffusion by C-V measurement (C-V 측정에 의한 Cu 확산방지막 특성 평가)

  • 이승윤;라사균;이원준;김동원;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • The properties of TiN as a barrier against Cu diffusion ere studied by sheet resistance measurement, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and capacitance-voltage(C-V) measurement. The sensitivities of the various methods were compared. Specimens with Cu/TiN/Ti/SiO2/Si structure were prepared by various deposition techniques and annealed at various temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ in 10%H2/90%Ar ambient for hours. As the effectiveness of the barrier property of TiN against Cu diffusion was vanished, the irregular-shaped sports were observed and outdiffused Si were detected on the surface of the Cu thin film. The C-V characteristics of the MOS capacitors varied drastically with annealing temperatures. In C-V measurement, the inversion capacitance decreased at annealing temperature range from $500^{\circ}C$ to $700^{\circ}C$ and increased remarkably at $800^{\circ}C$. These variations may be due to the Cu diffusion through TiN into $SiO_2$ and Si.

  • PDF

Nanoemulsions containing Vitamin E acetate prepared by PIC(phase inversion composition) methods: Factors affecting droplet sizes

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.602-611
    • /
    • 2013
  • We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.