• Title/Summary/Keyword: Temperature Check

Search Result 578, Processing Time 0.028 seconds

Thermal stress analysis for high pressure and temperature pipelines in ultra steam turbine (UST) system

  • Choi, Dae-keon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • A reliable assessment and analysis of the condition of high pressure and temperature steam pipelines requires defining stress state, which will take into consideration not just the impact of internal pressure and temperature but all applied loads. For that, usage of modeling and numerical methods for calculation and analysis of stress state is essential. The main aim of piping stress analysis is to check the design of piping layout, which will allow simple, efficient and economical piping supports and provide flexibility to the piping system for loads and stresses. The piping stress analysis is carried out using CAESER II software. By using this software we can evaluate stresses, stress ratios, flange condition, support loads, element forces and displacements at each node and points. In this paper, only the maximum and minimum displacement results are tabulated, which is also shown in detail by an example of main steam pipelines of UST Main Engine System [1].

Effect of Light Conditions on the Seasonal Growth and Photosynthetic Ability in Several Wintergrasses (광환경의 차이가 한지형 잔디의 연중 생육 및 광합성 능력에 미치는 영향)

  • 허건양
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 1997
  • The short green period of zoysiagrass has been a problem in using for turf. This study was performed to check growth response of several wintergrasses under sunny and shady area in Korea. Wintergrasses of 5 species, 27 cultivars introduced from U.S.D.A., were used in this study. After establishment, two fluctuations of top growth were observed which varied according to the species; first, due to drought in May, second, due to high temperature and humidity from July to August. Red fescues and perennial ryegrasses showed severe growth retardation in sunny area during summer period. Kentucky bluegrasses and tall fescues maintained good Qualities nearly all the year round arid showed slight disease infections. Kentucky bluegrass 'Kenblue' and red fescue 'Agram' grown under shady area showed higher photosynthetic ability than under sunny area, except the temperature range from 30˚C to 40 ˚C under 40,000 lux light in red fescue 'Agram'. And the phorosynthesis was decreased at the temperature range from 35 ˚C to 40 ˚C. Key words: Wintergrass, Top growth, Visual rating, Photosynthesis, Poa pratensis. Festuca arundinacea, Pestuca rubra. Lolium perenne, Agrostis stolonifera.

  • PDF

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Development of Web-based Design Compatibility Assessment Program for High Temperature Reactor (고온로 설계 적합성평가 프로그램 개발)

  • Cho, Doo Ho;Surh, Han Bum;Choi, Jae Boong;Huh, Nam Su;Choi, Young Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • In this paper, W-DCAP-HTR(Web-based Design Compatibility Assessment Program for High Temperature Reactor) which will be used to check the design criteria for high temperature reactor is newly proposed. To do this, the assessment procedure of the ASME Sec.III Div.5 such as time-dependent primary stress limit, accumulated inelastic strain, and creep-fatigue damage evaluation were investigated. Furthermore, the trend of candidate materials for high temperature reactor was also reviewed. Then, all assessment procedures for high temperature reactor have been computerized to enhance the efficiency and to reduce the possibility of human error during calculating procedure by hand calculation. It can be directly conducted by adopting the actual thermal and structural analysis results. The validation of W-DCAP-HTR has been demonstrated by benchmark analysis.

A Case Study of Innovative Engineering Education System by Idea Factory (Development of Temperature-Humidity Control Device for Fiber Storage on Composites) (Idea Factory를 통한 공학교육 혁신 활동 사례 연구 (복합재 섬유 보관용 온·습도 조절 장치 개발))

  • Park, Soo-Jeong;Kim, Yun-Hae
    • Journal of Engineering Education Research
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • This research is as a case study of innovative engineering education system through idea factory of korea maritime and ocean university and deals with development of temperature-humidity control device (THCD) for fiber storage on composites in viewpoint of problem solving method. Fiber reinforced plastic (FRP) includes many variables on the composite manufacturing process. Above all, the interfacial adhesion between the fiber and the matrix acts as an important thing that decided mechanical property of the FRP, and also it is profoundly linked to external temperature and relative humidity. High void fraction leads to a result in interlaminar fracture. Therefore, in this research, to establish correlation between fiber reinforcement and fiber storage conditions of temperature and relative humidity we developed a THCD for fiber reinforcement. To evaluate performance of the THCD, glass fiber reinforced plastic (GFRP) is made under the extreme conditions each temperature $34^{\circ}C$, relative humidity 98 % and it can be said that there are the change of mechanical properties according to fiber storage conditions. As a result, the THCD showed sufficient possible application for understanding and applied research of composites field in material engineering. Also, we could check that the necessity of introduction of innovative system such as idea factory existed.

Study on Optimal Structure of Low Power Microheater to Remain Stability at High Temperature (고온에서 안정한 저전력 마이크로히터 구조 최적화 연구)

  • Lim, Woonhyun;Kondalkar, Vijay;Lee, Keekeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • Microheaters with different structures were fabricated and compared to find an optimal configuration enhancing the performances of $C_2H_2$ gas sensor. Three temperature sensors were integrated on the surface of the insulation layer over the microheater, and resistance changes were observed to check the generated heat from the microheater. A low operating voltage of 1mV was applied to the temperature sensor to minimize any influence of thermal heat from the resistance type temperature sensor, whereas high voltages in the range between 10 and 20V were applied to the microheater. A microheater structure generating maximum heat at low voltage was determined. The generated heat was verified by the temperature sensors on the top of the $Si_3N_4$ and infrared camera. A long term stability and accuracy of the microheater were observed. The developed microheater was applied to enhance the performances of $C_2H_2$ gas sensor and successfully confirmed that the developed microheater greatly contributes to the improvement of sensitivity and selectivity of gas sensor.

Effect of Reserve Air-Drying of Korean Pine Heavy Timbers on High-temperature and Low-humidity Drying Characteristics (예비천연건조가 잣나무 중목구조부재의 고온저습건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Park, Moon-Jae;Park, Joo-Saeng;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • The pre-air-drying of Korean pine before the high-temperature and low-humidity drying was shown to be effective in uniform moisture content distribution and prevention of surface check. Our results suggest that initial moisture content of the timber also plays important role in high-temperature and low-humidity drying method. The pre-air-drying also helps in the reduction of surface checks in Korean pine when compared to the Korean pine dried by only high-temperature and low-humidity. End-coating was not effective in the prevention of twist, shrinkage, case hardening and internal checks. The pre-air-drying reduces the internal tension stresses which occur during high-temperature and low-humidity drying thus decreasing case hardening and also preventing internal checks. The pre-air-drying decreases the moisture content and causes shrinkage which leads to increased twist in the Korean pine.

Air Density Correction of Ionization Chamber using $^{90}Sr$ Radioactive Check Device ($^{90}Sr$ 방사성 동위원소를 이용한 전리함의 대기 보정계수 측정)

  • Park, Sung-Y.;Kim, Woo-C.;Shin, Dong-O.;Ji, Young-H.;Kwon, Soo-I.;Lee, Kil-D.;Cho, Young-K.;Loh, John-J.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.267-271
    • /
    • 1998
  • It is required to measure air density correction factor at the time of absorbed dose calibration or measurement. In general, thermometer and barometer are widely used for air density correction. However, this can be done using the radioactive check device with better accuracy. The measurements of air density correction were performed by using the radioactive check device, Unidos electrometer, and 0.6 cc Farmer-type ion chamber of PTW under the different environmental conditions. Above experiments were repeated with thermometer and barometer. By comparing the two methods, they were within the difference of 0.2 %. The overall uncertainty for the dose found in thermometer and barometer was 1.2 - 1.6 %, depending upon either one step or two, whereas the overall uncertainty for the radioactive check device was 1.02 %. This method may reduce the possible error which could occur when thermometer and barometer are not calibrated at regular basis.

  • PDF

Changes of Internal Temperature during the Cooking Process of Dumpling (Mandu) (조리과정 중 중심부 온도의 변화 - 만두를 중심으로)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Korean Journal of Human Ecology
    • /
    • v.22 no.3
    • /
    • pp.485-492
    • /
    • 2013
  • The temperature changes of dumpling(mandu) during cooking process were examined and the effects of time-temperature and/or time-size interactions on internal temperature were studied. Mandu was purchased from local markets and classified by its weight(small, medium, and large). Boiling, steaming, pan frying, and deep fat frying were adopted. Internal temperature was measured with a food thermometer in every one minute. The internal temperature of mandu increased over time in every cooking process(p<0.05). After three minutes the internal temperature of mandu in boiling, pan frying, and deep fat frying reached over at $74^{\circ}C$, which is high enough temperature to kill the harmful bacteria, but not in steaming. The internal temperature of mandu was significantly affected by cooking time, size, and both in boiling, steaming, and deep fat frying(p<0.05). There were significant differences between the internal and surface temperatures of mandu in the cooking processes except pan frying in three minutes(p<0.05). The results of this study indicate three minutes' cooking of the mandu by boiling, pan frying, and deep fat frying is safe enough to eat. However, longer steaming time is needed in order to reach safe temperature. This study also indicates the cooking time and size of mandu appear to be major factors in determining the internal temperature achieved at $74^{\circ}C$. More research is needed to check time to reach a safe temperature in the cooking process of mandu by steaming.

Effect of Curing Temperature on Mechanical Properties of Polymer Mortar for Urgent Repairing (양생온도가 긴급 보수용 폴리머 모르타르의 역학적 특성에 미치는 영향)

  • Cho, Yong In;Hong, Ki Nam;Kim, Min Sung;Park, Jae Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.109-116
    • /
    • 2016
  • This study presents the results of experiments to investigate the effect of polymer type and curing temperature on the mechanical properties of polymer mortar. Setting time of two types of polymers, hardening-delayed polymer(HDP) and rapid hardening polymer(RHP), was tested to check the working time. Additionally, flexural strength, compressive strength, and splitting tensile strength was investigated for mortars using these polymers. From these results, it was confirmed that, irrespective to curing temperature, RHP mortar at the curing age of 24h develops the similar mechanical properties to maximum properties and HDP mortar is more sensitive to the curing temperature. In addition, it should be noted that RHP mortar and HDP mortar are suitable in winter and summer, respectively.