• Title/Summary/Keyword: Temperature/Humidity Sensor

Search Result 500, Processing Time 0.024 seconds

Data analysis for weather forecast system using pressure, temperature and humidity sensors (압력센서와 온습도센서를 이용한 일기예보 시스템의 개발을 위한 데이터 분석)

  • Kim, Won-Jae;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This paper is written for the purpose of obtaining the information about the weather easily by the development of weather forecast system sensing temperature, humidity, and atmospheric pressure as key information. For this, data is obtained from the Weather Bureau, and analyzed in order to set a standard of weather forecast from the collected data. The pressure sensor and temperature-humidity sensor are fabricated using the piezoresistive effect of semiconductor, which are used to collect data. The weather forecast system is made using microprocessor.

  • PDF

Implementation of Wireless Automatic Control System for Vehicle Interior Environment (차량 내부 환경 제어용 무선 자동화 시스템 구현)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.287-291
    • /
    • 2010
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Investigation of Internal Temperature and Relative Humidity of Concrete Immediately After Mix and Placement (양생직후 초기재령의 콘크리트 내부 온도와 상대습도의 측정 및 분석)

  • Park, Cheol-Woo;Park, Young-Hoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1065-1068
    • /
    • 2008
  • Concrete is still one most common construction materials even in railway structures. As structures become massive and mega-sized, the importance of early age concrete quality control becomes more significant. Among various factors, relative humidity and temperature are the primary factors governing the early age quality. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

The Design and fabrication of Capacitive Humidity Sensor Having Interdigital Electrodes and Its Signal Processing Circuit (빗살전극형 정전용량형 습도센서와 그 신호처리회로의 설계 제작)

  • Kang, Jeong-Ho;Lee, Jae-Yong;Kim, Woo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.26-30
    • /
    • 2006
  • For the purpose of developing capacitive humidity sensor having interdigital electrodes, interdigital electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thickness. For the development of ASIC, switched capacitor signal processing circuits for capacitive humidity sensor were designed and simulated by Cadence using $0.25{\mu}m$ CMOS process parameters. The signal processing circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control. The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is $0.4%R.H./^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of $3%R.H.{\sim}98%R.H.$. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigital electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc.

The Design and Fabrication of Capacitive Humidity Sensor Having Interdigit Electrodes and its Signal Conditional Circuitry (빗살형 전극을 가지는 정전용량형 습도센서와 그 신호처리회로의 설계와 제작)

  • Park, Se-Kwang;Kang, Jeong-Ho;Park, Jin-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.144-148
    • /
    • 2001
  • For the purpose of developing capacitive humidity sensor having interdigit electrodes, interdigit electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thichness. For the development of ASIC, switched capacitor signal conditioning circuits for capacitive humidity sensor were designed and simulated by cadence using 0.25um CMOS process parameters. The signal conditioning circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is 0.4%R.H./$^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of 3%R.H. ${\sim}$ 98%R.H.. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigit electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc..

  • PDF

Optimal Conditions for Mist Sensing and Removal in Automobile (자동차 내부의 김서림 감지 및 제거를 위한 최적의 조건)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.763-769
    • /
    • 2012
  • For mist sensing, temperature-humidity sensor is attached on six positions of front glass and rearview mirror in automobile. Bottom-left side of front glass is the best position where mist is sensing. For mist removal, air conditioner is turned on intensity 1, 3 and is set the temperature at 17[$^{\circ}C$], 25[$^{\circ}C$]. And heater is turned on intensity 1, 3 and is set the temperature at 25[$^{\circ}C$], 32[$^{\circ}C$]. The best condition which mist is removed is temperature at 17[$^{\circ}C$] and intensity 3 of air conditioner mode. At this condition, total average value of humidity output voltage difference is 0.561[V]. Also, air conditioner mode is effective than heater mode for mist sensing and removal.

Evaluation of Temperature and Humidity of a Thermo-Hygrostat of PET/CT Equipment using a Temperature and Humidity Sensor(BME 280) (온·습도센서(BME 280 센서)를 이용한 PET/CT 장비의 항온 항습기 온·습도 평가)

  • Ryu, Chan-Ju;Kim, Jeong-A;Kim, Jun-Su;Yun, Geun-Yeong;Heo, Seung-Hui;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • PET(Positron Emission Tomography) devices are used as PET/CT or PET/MRI devices fused with the devices of CT or MRI for obtaining anatomical information. Therefore, the devices are constructed in circular ring-type structure whose length of gantry(the main part of filming) becomes wider and the interior depth becomes longer in comparison to other common medical equipments. scintillator, one of the components in PET devices, is inside the gantry, and as it is consisted of crystal which is sensitive to the change of temperature and humidity, large temperature change can cause the scintillator to be damaged. Though scintillator located inside the gantry maintains temperature and humidity with a thermo-hygrostat, changes in temperature and humidity are expected due to structural reasons. The output value was measured by dividing the inside of the gantry of the PET/CT device into six zones, each of which an Adafruit BME 280 temperature and humidity sensor was placed at. A thermo-hygrostat keeps the temperature and humidity constant in the PET/CT room. As the measured value of temperature and humidity of the sensor was obtained, the measured value of temperature and humidity appeared in the thermohygrostat was taken at the same time. Comparing the average measured values of temperature and humidity measured at each six zones with the average values of the thermo-hygrostat results in a difference of 2.71℃ in temperature and 21.5% in humidity. The measured temperature and humidity of PET Gantry is out of domestic quality control range. According to the results of the study, if there is continuous change in temperature and humidity in the future, the aging of the scintillator mounted in the PET Gantry is expected to be aging, so it is necessary to find a way to properly maintain the temperature and humidity inside the Gantry structure.

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.

Development of QCM dew point sensor and its sensing characteristics study (수정미소저울 노점센서 제작 및 반응특성 연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • This paper represents development of quartz crystal microbalance (QCM) and usage as a dew point sensor. The temperature of a quartz resonator was controlled precisely from $20^{\circ}C$ to $-30^{\circ}C$ with the ramping rate of $0.1^{\circ}C/s$ by using a custom-made crystal holder housing the quartz resonator associated with a thermoelectric cooler (Peltier cooler), which results in the working range from $15.2^{\circ}C$ to $-24.0^{\circ}C$ based on an accurate holder temperature compensation and temperature effect compensation process. The developed QCM dew point sensor and analysis techniques show very good sensing characteristics at measurement of moist air with the relative humidity from 10 %R.H. to 90 %R.H. generated by a divided-type humidity generator and the dew point temperatures were determined with an accuracy of less than ${\pm}0.18^{\circ}C$, which also showed good agreement with reference values in their error range.