• Title/Summary/Keyword: Temperature/Humidity Sensor

검색결과 500건 처리시간 0.029초

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • 오영제;이득용
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

감습 고분자막이 코팅된 수정미소저울 습도센서 제작 및 특성연구 (Development of a hygroscopic polymer-coated QCM humidity sensor and its characteristics)

  • 권수용;김종철;최병일;남현수
    • 센서학회지
    • /
    • 제14권6호
    • /
    • pp.395-401
    • /
    • 2005
  • A highly stable quartz crystal microbalance (QCM) that showed a stability of frequencies and exhibited a very low noise level has been developed. The long-term drift was <0.05 Hz/h over a period of 10 h, and the short-term rms (root mean square) noise was <0.015 Hz. Our QCM sensor was used as a humidity sensor employing a poly(methyl methacrylate) (PMMA) polymer film as a hygroscopic layer, which showed good characteristics in the relative humidity (RH) range of $2{\sim}90%$ RH. Comparing the characteristics of the QCM sensor with those of other types of humidity sensors employing PMMA film as a hygroscopic layer, and with other QCM sensors employing other hygroscopic layers is represented.

비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향 (Effects of Temperature and Humidity on NDIR CO2 Gas Sensor)

  • 김진호;이승환
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

유무선 통신용 MEMS 온습도 네트워크 센서 (MEM Temperature and Humidity Network Sensor for Wire and Wireless Network)

  • 정우철;차부상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.360-361
    • /
    • 2006
  • This paper describes a wire and wireless network sensor for temperature and humidity measurements. The network sensor comprises PLC(Power Line Communication) and RF transmitter(433MHz) for acquiring an internal (on-board) sensor signal, and measured data is transmitted to a main processing unit. The network sensor module is consist of MEMS sensor, 10-bit A/D converter, pre-amp., gain-amp., ADUC812 one chip processor and PLC/RF transmitting unit. The temperature and humidity sensor is based on MEMS piezoelectric membrane structure and is implemented by using dual function sensor for smart home and smart building.

  • PDF

상대습도계의 온도 의존성과 경년변화의 통계적 분석 (Statistical Analysis on the Temperature Dependence and Long-Term Change of Relative Humidity Sensors)

  • 김종철;최병일;우상봉;양인석
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.420-424
    • /
    • 2012
  • We have investigated temperature dependence and long-term change of humidity measurement from 32 relative humidity sensors. The readings of the humidity sensors depended not only the reference humidity, but also temperature of the chamber. Approximately, the temperature dependence of the humidity sensor in average was 0.05 %R.H./$^{\circ}C$ in the temperature range from $5^{\circ}C$ to $55^{\circ}C$. For humidity sensors that have an internal temperature compensation circuit, the resulting temperature dependence was weaker by 20%. It should be also noted that for the humidity sensors used in this work underwent ${\pm}3$ %R.H. change per year for level of confidence of 95%. The users of relative humidity sensors may refer this value as a minimum change when they set the calibration interval of the humidity sensors.

잉크젯 프린팅 기술을 이용한 플렉서블 온·습도센서 개발 (Fabrication of Flexible Temperature & Humidity Sensor Using Inkjet-printing Technology)

  • 계지원;한동철;신한재;김헌곤;이왕훈
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.119-123
    • /
    • 2015
  • This paper presents the inkjet-printed flexible temperature and humidity sensor(F-TH sensor) using PEDOT:PSS. The series, mesh and parallel type sensing element using PEDOT:PSS ink was printed on the overhead projector(OHP) film. The fabricated sensor of each structure has the temperature sensitivity of $140{\Omega}/^{\circ}C$, $29{\Omega}/^{\circ}C$ and $1.4{\Omega}/^{\circ}C$ with linearity, respectively. Also the fabricated sensor was not only possible to measure a temperature, but also to detect humidity. The humidity sensitivity of $400{\Omega}/%RH$, $3.4{\Omega}/%RH$ and $3{\Omega}/%RH$ with linearity, respectively. The fabricated F-TH sensor is expected for the various applications such as electronic devices, bio-healthcare, industrial field.

분류식 습도 발생 장치 개발 및 라디오존데 습도센서 저온 효과 보정에 활용 연구 (Development of a divided-flow humidity generator and its use for studying low-temperature effects on radiosonde humidity sensors)

  • 장은정;이영석;최병일;최윤석;이상욱
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.243-249
    • /
    • 2021
  • Humidity is an important physical quantity that is closely related with the quality of everyday life as well as the quality control of products in various industries. Here, we have developed a divided-flow type humidity generator of which humidity generation is faster than the saturator-based humidity generator in ppm level. The operation principle of the divided-flow humidity generator is first introduced. Then, the performance of the divided-flow humidity generator is verified by testing the radiosonde humidity sensor at low temperature. As a result, the humidity generated from the divided-flow humidity generator is consistent with the saturator-based precision humidity generator within 1.6% relative humidity in the range from 10% to 40% at -45 ℃. It is also found that the radiosonde humidity sensor shows measurement errors by 3% - 5% at -45 ℃ when it is only calibrated at room temperature. The response times of radiosonde humidity sensor using the divided-flow humidity generator are between about 2 and 9 minutes, whereas those by the saturator-based humidity generator are about 20 minutes. In this regard, the divided-flow humidity generator has a merit in terms of fast humidity changes for the calibration of radiosonde humidity sensors at low-temperatures.

ATmega128를 이용한 온.습도 자동제어 모형 제작 (Design Clean Room of Controled Temperature and Humidity using ATmega128)

  • 김민구;구태회;김영민;심새로얼;소대화
    • 동굴
    • /
    • 제77호
    • /
    • pp.59-65
    • /
    • 2007
  • Nowaday, our life is closely related to temperature and the humidity. To control the temperature and the humidity have pursued the comfort environment. We develop that form ware is controled temperature and humidity that used the ATmega128. We embody home-automation system to use the ATmega128, temperature sensor, LCD, relay device and peltier device.