• Title/Summary/Keyword: Technology transfer performance

Search Result 1,384, Processing Time 0.033 seconds

MODELING THE TECHNOLOGY TRANSFER PROCESS IN THE THAI CONSTRUCTION INDUSTRY: A PILOT STUDY

  • Tanut Waroonkun;Rodney A. Stewart;Sherif Mohamed
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.845-848
    • /
    • 2005
  • Technology transfer (TT) has been defined as the shared responsibility between the source and the destination for ensuring that technology is accepted and at least understood by someone with the knowledge and resources to apply and/or use the technology. The adoption of TT in construction industries is necessary for economic growth to occur in developing countries such as Thailand. This process should provide numerous benefits for the host sector in areas such as increased productivity, enhancement of product quality, cost savings, improvements in market share and entry to new markets. However, there are many factors, which may impact on the TT process and its subsequent outcomes for Thai construction firms and individuals, including, the transfer environment, learning environment, transferor characteristics and transferee characteristics. The performance and interaction of these enablers will influence the degree of value added to the local construction sectors in areas such as economic advancement, knowledge advancement and project performance. This paper presents a conceptual framework for international TT that accommodates the numerous factors believed to impact on the processes effectiveness. Through a Pilot Study, where 27 industry professionals from Thailand were interviewed, the significant factors which impact on the TT process have been identified along with the strength of interrelationship between individual and groups of factors. Future research seeks to target a greater sample of respondents with the view to validate the conceptual model and apply it on a number of large Thai projects where international TT was incorporated into the project agreement.

  • PDF

A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert;Wan, Chi-Chuan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.85-100
    • /
    • 2007
  • This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

Hot Wire Laser Welding of Multilayer for Narrow Gap - Analysis of Wire Melting/Transfer and Arc Formation Phenomenon by High Speed Imaging - (내로우 갭 적용을 위한 핫와이어 송급 레이저용접 - 고속촬영을 통한 와이어 용융/이행 현상과 아크 포메이션 분석 -)

  • Kim, Kyounghak;Bang, Hansur;Bang, Heeseon;Kaplan, Alexander F.H.;Nasstrom, Jonas;Frostevarg, Jan
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.26-32
    • /
    • 2016
  • In this study, Hot-wire laser welding (HWLW) without keyhole which deposits filler material by feeding hot wire into the process zone has been performed to increase process performance. From the analysis of High Speed Imaging (HSI), for higher voltage, the process is prone to arc formation and drop transfer, which is disagreeable transfer mode. It is necessary that arc formation and drop (globular) transfer should be avoided by lower voltage. Therefore, continuous wire melting and transfer mode is preferred when adopting this process. The HWLW technique has high potential in terms of performance, precision, robustness and controllability for thick section of narrow gap.

Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method (역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가)

  • Kim, E.H.;Kim, H.K.;Seo, K.S.;Lee, M.K.;Cho, C.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

Research on Science DMZ scalability for the high performance research data networking (연구데이터의 고성능 네트워킹을 위한 Science DMZ 확장성 연구)

  • Lee, Chankyun;Jang, Minseok;Noh, Minki;Seok, Woojin
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.22-28
    • /
    • 2019
  • A Science DeMilitarized Zone (DMZ) is an optimized network technology tailored to research data nature. The Science DMZ guarantees end-to-end network performance by forming a closed research network without redundant networking and security devices for the authorized researchers. Data Transfer Node (DTN) is an essential component for the high performance and security of the Science DMZ, since only transfer functions of research data are allowed to the DTN without any security- and performance-threatening functions such as commercial internet service. Current Science DMZ requires per-user DTN server installation which turns out a scalability limitation of the networks in terms of management overhead, entry barrier of the user, and networks-wise CAPEX. In order to relax the aforementioned scalability issues, this paper suggests a centralized DTN design where end users in a group can share the centralized DTN. We evaluate the effectiveness of the suggested sharable DTN design by comparing CAPEX against to that of current design with respect to the diverse network load and the state-of-the-art computing machine.

Performance Analysis of Contactless Electrical Power Transfer for Maglev

  • Hasanzadeh, S.;Vaez-Zadeh, S.
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Contactless electrical power transfer through an air gap is a revived technology for supplying energy to many movable applications including Maglev. In this paper, magnetic equivalent circuits and analytical models of contactless electrical power transfer systems are developed and evaluated through experiment. Overall coupling coefficient and overall efficiency are introduced as means for evaluating the systems' performance. Compensating capacitors in primary and secondary sides of the systems improve the overall coupling coefficient and overall efficiency. Using the analytical models, the effects of different parameters and variables such as air gap and load current are analyzed to give a high coupling coefficient and an improved efficiency of power transfer for different compensation structures.

An Investigation on Friction Factors and Heat Transfer Coefficients in a Rectangular Duct with Surface Roughness

  • Ahn, Soo-Whan;Son, Kang-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2002
  • An investigation on the fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one-side roughened by five different shapes. The effects of rib shape geometries as well as Reynolds numbers are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at e/De=0.0476, P/e=8, and W/H=2.33, respectively. To understand the characteristics of heat transfer enhancements, the friction factors are also measured. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones.

Study on Single-Phase Heat Transfer, Pressure Drop Characteristics and Performance Prediction Program in the Oblong Shell and Plate Heat Exchanger (Oblong 셀 앤 플레이트 열교환기에서의 단상 열전달, 압력강하 특성 및 성능예측 프로그램 개발에 관한 연구)

  • 권용하;김영수;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1036
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with Oblong Shell and Plate heat exchanger using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient and pressure drop in a vertical Oblong Shell and Plate heat exchanger. Downflow of hot water in one channel receives heat from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the Oblong Shell and Plate heat exchanger remains turbulent. The present data show that the heat transfer coefficient and pressure drop increase with the Reynolds number. Based on the present data, empirical correlations of the heat transfer coefficient and pressure drop in terms of Nusselt number and friction factor were proposed. Also, performance prediction analyses for Oblong Shell and Plate heat exchanger were executed and compared with experiments. $\varepsilon$-NTU method was used in this prediction program. Independent variables are flow rates and inlet temperatures. Compared with experimental data, the accuracy of the program is within the error bounds of $\pm$5% in the heat transfer rate.

The Effects of Relationship between Universities, Public Research Institutes and External Organizations on Performance of Technology Transfer : based of Triple Helix Model (대학·공공연구소와 외부기관과의 관계가 기술이전 성과에 미치는 영향 : Triple Helix 모형을 기반으로)

  • Son, Hosung;Chung, Yanghon;Yoon, Sangpil
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.587-614
    • /
    • 2018
  • The Korean government is aiming to strengthen industrial and national competitiveness through the promotion of cooperation between universities, public research institutes and industry and vitalization of technology transfer. In 2013 and 2014, the Ministry of Trade, Industry and Energy and Ministry of Science, ICT and Future Planning have announced policies to support SMEs by public research organizations. In addition, in 2015, the 'Korean Fraunhofer support system', which pay government subsidies according to the amounts of private R&D funds was adopted. However, there are some concern about the government's policies. There is yet disclosed how these policies affect technology transfer because industrial R&D funding has not been activated in Korea unlike German. Therefore this paper analyzes effects of relationship between universities, public research institutes and external organizations on performance of technology transfer based on the Triple Helix Model. Empirical results show that the relationship with the government has a significant impact on the resource security and the relationship with the industry has a significant effect on the diffusion of the performance. In addition, a public research institute was selected and case analysis was conducted to suggest policy implications for improving the technology transfer performance of universities and public research institutes.

Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method (Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향)

  • Kim, Gyeong-Hee;Cho, Eun-Ae;Han, Jong-Hee;Kim, Sung-Hyun;Eom, Kwang-Sup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.