A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert (Energy & Environment Research Laboratories, Industrial Technology Research Institute) ;
  • Wan, Chi-Chuan (Energy & Environment Research Laboratories, Industrial Technology Research Institute)
  • Published : 2007.09.30

Abstract

This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

Keywords

References

  1. Wang, C. C., 2000, Technology review-a survey of recent patents of fin-and-tube heat exchangers, J. of Enhanced Heat Transfer, Vol. 7, No.5, pp. 333-345 https://doi.org/10.1615/JEnhHeatTransf.v7.i5.40
  2. Wang C. C., Webb, R. L. and Chi, K. U., 2000, Data reduction of air-side performance of fin-and-tube heat exchangers, Experimental Thermal and Fluid Science, Vol. 21, pp. 228-236
  3. Nakayama, W. and Xu, L. P., 1983, Enhanced fins for air-cooled heat exchangers-Heat transfer and friction factor correlations, ASME-JSME Thermal Engineering Conf., Vol. 1, pp. 495-502
  4. Kang, H. C. and Kim, M. H., 1999, Effect of strip location on the air-side pressure drop and heat transfer in strip fin-and-tube heat exchangers. Int. J. of Refrigeration, Vol. 22, pp. 302 - 312 https://doi.org/10.1016/S0140-7007(98)00062-0
  5. Rich, D. G., 1966, Efficiency and thermal resistance of circular fins and rectangular fins, Proceedings of International Heat Transfer Conference, Vol. 3, pp. 281-286
  6. Schmidt, Th. E., 1949, Heat transfer calculations for extended surfaces, Refrigerating Engineering, April, pp. 351-357
  7. Hong, K. T. and Webb, R. L., 1996, Calculation of fin efficiency for wet and dry fins, Int. J. HVAC&R Research, Vol. 2, pp. 27-41 https://doi.org/10.1080/10789669.1996.10391331
  8. Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc., p. 131
  9. Hong, K. T. and Webb, R. L., 1999, Performance of dehumidifying heat exchangers with and without wetting coatings, ASME J. of Heat Transfer, Vol. 121, pp. 1018-1026 https://doi.org/10.1115/1.2826052
  10. Threlkeld, J. L., 1970, Thermal Environmental Engineering, New-York: Prentice-Hall, Inc
  11. Myers, R. J., 1967, The effect of dehumidification on the air-side heat transfer coefficient for a finned-tube coil. M. S. Thesis, University of Minnesota, Minneapolis
  12. Wang, C. C., Hsieh, Y. C. and Lin, Y. T., 1997, Performance of plate finned tube heat exchangers under dehumidifying conditions, ASME J. of Heat Transfer, Vol. 119, pp. 109-117 https://doi.org/10.1115/1.2824075
  13. Wu, G. and Bong, T. Y., 1994, Overall efficiency of a straight fin with combined heat and mass transfer, ASHRAE Transactions, Vol. 100(1), pp.367-374
  14. Pirompugd, W., Wongwises, S., and Wang, C. C., 2005, A Tube-by-tube reduction method for simultaneous heat and mass transfer characteristics for plain fin-and-tube heat exchangers in dehumidifying conditions, Heat and Mass Transfer, Vol. 41, pp.756-765 https://doi.org/10.1007/s00231-004-0581-x
  15. Pirompugd, W., Wongwises, S., and Wang, C. C., 2007, Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions, Int. J. of Heat and Mass Transfer, Vol. 50, pp. 552-565 https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.017
  16. Wang, J. and Hihara, E., 2003, Prediction of air coil performance under partially wet and totally wet cooling conditions using equivalent dry-bulb-temperature method, Int. J. Refrigeration, Vol. 26, pp. 293-301 https://doi.org/10.1016/S0140-7007(02)00132-9
  17. Huzayyin, A. S., Nada, S. A., and Elattar, H.F., 2007, Air-side performance of a wavy-finned-tube direct expansion cooling and dehumidifying air coil, Int. J. Refrigeration, Vol. 30, pp. 230-240 https://doi.org/10.1016/j.ijrefrig.2006.07.023
  18. Xia, Y. and Jacobi, A. M., 2005, Air-Side data interpretation and performance analysis for heat exchangers with simultaneous heat and mass transfer: wet and frosted surfaces, Int. J. of Heat and Mass Transfer, Vol. 48, pp. 5089-5102 https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.008
  19. Rich, D. G., 1973, The effect of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers, ASHARE Transaction, Vol. 79, No.2, pp.135-145
  20. Rich, D. G., 1975, The effect of the number of tubes rows on heat transfer performance of smooth plate fin-and-tube heat exchangers, ASHRAE Transactions, Vol. 81, No.1, pp.307-317
  21. McQuiston, F. C., 1978, Heat, mass and momentum transfer data for five plate-fin-tube heat transfer surfaces, ASHRAE Transaction, Vol. 84, No.1, pp. 266-293
  22. McQuiston, F. C., 1978, Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surface, ASHRAE Transactions, Vol. 84, No.1, pp. 294-308
  23. Gray, D. L. and Webb, R. L., 1986, Heat transfer and friction correlations for plate finned-tube heat exchangers having plain fins, Proc. 8th. Heat Transfer Conference, pp. 2745-2750
  24. Wang, C. C., Hsieh, Y. C., Chang, Y. J., and Lin, Y. T., 1996, Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins, Int. J. of Refrigeration, Vol. 19, pp.223-230 https://doi.org/10.1016/0140-7007(96)00021-7
  25. Seshimo, Y. and Fujii, M., 1991, An experimental study of the performance of plate fin and tube heat exchangers at low Reynolds number, Proceeding of the 3th ASME/JSME Thermal Engineering Joint Conference, Vol. 4, pp. 449-455
  26. Wang, C. C. and Chang, C. T., 1998, Heat and mass transfer for plate fin-and-tube heat exchangers with and without hydrophilic coating, Int. J. of Heat and Mass Transfer, Vol. 41, pp.3109-3120 https://doi.org/10.1016/S0017-9310(98)00060-X
  27. Wang, C. C. and Chi, K. U., 2000, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers: part 1: new experimental data, Int. J. of Heat and Mass Transfer, Vol. 43, pp. 2681-2690 https://doi.org/10.1016/S0017-9310(99)00332-4
  28. Wang, C. C., Chi, K. U. and Chang, C. J., 2000, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers : part 2: correlation, Int. J. of Heat and Mass Transfer, Vol. 43, pp. 2693-2270 https://doi.org/10.1016/S0017-9310(99)00333-6
  29. Liu, Y. C., Hu, R., Yang, B. C., Chen, I. Y., and Wang, C. C., 2008, Airside performance of fin-and-tube heat exchangers - data with larger diameter tube, ASHRAE Transactions, in press
  30. Wang, C. C., Du, Y. J., and Chang, C. J., 2000, Airside performance of slit fin-and-tube heat exchangers in wet conditions, Proceedings of 34th National Heat Transfer Conference, paper no. 12092, Baltimore, USA
  31. Wang, C. C., Lin, Y. T., and Lee, C. J., 2000, An airside correlation for plain fin-and-tube heat exchangers in wet conditions, Int. J. of Heat Mass Transfer, Vol. 43, pp.1867-1870
  32. Wang, C. C., Lee, W. S., Sheu W. J., and Liaw, J. S., 2002, Empirical Airside Correlations of Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions, Int. J. of Heat Exchangers, Vol. 2, pp.54-80
  33. Beecher, D. T. and Fagan, T. J., 1987, Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers, ASHRAE Transactions, Vol. 93, No.2, pp. 1961-1984
  34. Webb, R. L., 1990, Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries, ASHRAE Transactions, Vol. 96, No.2, pp.445-449
  35. Wang, C. C., Fu, W. L., and Chang, C. T., 1997, Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers, Exp. Thermal and Fluid Sci., Vol. 14, pp.174-186 https://doi.org/10.1016/S0894-1777(96)00056-8
  36. Kim, N. H., Yun, J. H., and Webb, R. L., 1997, Heat transfer and friction correlation for wavy plate fin-and-tube heat exchangers, J. of Heat Transfer, Vol. 119, pp. 560-567 https://doi.org/10.1115/1.2824141
  37. Wang, C. C., 2000, Recent progress on the air-side performance of fin-and-tube heat exchangers, Int. J. of Heat Exchangers, Vol. 1, pp.49-76
  38. Wang, C. C., Tsi, Y. M., Lu, D. C., 1998, Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers, AIAA J. of Thermophysics and Heat Transfer, Vol. 12, pp. 423-430 https://doi.org/10.2514/2.6354
  39. Wang, C. C., Jang, J. Y., and Chiou, N. F., 1999, Effect of waffle height on the heat transfer and friction characteristics of wavy fin-and-tube heat exchangers, Heat Transfer Engineering, Vol. 20, No.3, pp. 45-56
  40. Wang, C. C., Jang, J. Y., and Chiou, N. F., 1999, A heat transfer and friction correlation for wavy fin-and-tube heat exchangers, Int. J. of Heat and Mass Transfer, Vol. 42, pp. 1919-1924 https://doi.org/10.1016/S0017-9310(98)00288-9
  41. Wang, C. C., Lin, Y. T., Lee, C. J., and Chang, Y. J., 1999, An investigation of wavy fin-and-tube heat exchangers; a contribution to databank, Experimental Heat Transfer, Vol. 12, pp. 73-89 https://doi.org/10.1080/089161599269825
  42. Wang, C. C., Hwang, H. M., and Lin, Y. T, 2002, Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers, Int. J. of Refrigeration, Vol. 25, pp. 653-660 https://doi.org/10.1016/S0140-7007(01)00047-0
  43. Wang, C. C., Du, Y. J., Chang, Y. J., and Tao, W. H., 1999, Airside performances of herringbone fin-and-tube heat exchangers in wet conditions, Canadian J. of Chemical Engineering, Vol. 77, pp.1225-1230
  44. Wang, C. C., Tao, W. H., and Du, Y. J., 2000, Effect of Waffle Height on the Heat Transfer and Friction Characteristics of Wavy Fin-and-Tube Heat Exchangers Under Dehumidification, Heat Transfer Engineering, Vol. 21, No.5, pp.17-26
  45. Yoshii, T., Yamamoto, M., and Otaki, T., 1973, Effects of dropwise condensate on wet surface heat transfer of air cooling coils, in Proceedings of the 13th Int. Congress of Refrigeration, International Institute of Refrigeration, Paris, pp. 285-292
  46. Sparrow, E. M. and Hossfeld, L. M., 1984, Effect of rounding of protruding edges on heat transfer and pressure drop in a duct, Int. J. Heat Mass Transfer, Vol. 27, pp. 1715-1722 https://doi.org/10.1016/0017-9310(84)90154-6
  47. Mirth, D. R. and Ramadhyani, S., 1994, Correlations for predicting the air-side Nusselt numbers and friction factors in chilled-water cooling coils, Experimental Heat Transfer, Vol. 7, pp. 143-162 https://doi.org/10.1080/08916159408946477
  48. Youn, B. and Kim, N. H., 2007, An experimental investigation on the airside performance of fin-and-tube heat exchangers having sinusoidal wave fins, Heat Mass Transfer, Vol. 43, pp. 1249 - 1262 https://doi.org/10.1007/s00231-006-0210-y
  49. Mirth, D. R. and Ramadhyani, S., 1993, Prediction of cooling-coils performance under condensing conditions, Int. J. Heat and Fluid Flow, Vol. 14, pp.391-400 https://doi.org/10.1016/0142-727X(93)90013-D
  50. Jacobi, A. M., Shah, R., 1998, Air-side flow and heat transfer in compact heat exchangers: a discussion of enhancement mechanisms, Heat Transfer Engineering, Vol. 19, No.4, pp.29-39 https://doi.org/10.1080/01457639808939934
  51. Chang, W. R., Wang, C. C., Tsi, W. C., and Shyu, R. J., 1995, Air side performance of louver fin heat exchanger, in Proc. of the 4th ASME/JSME Thermal Engineering Joint Conference, Vol. 4, pp.467-472
  52. Chi, K. U., Wang, C. C., Chang, Y. J., and Chang, Y. P., 1998, A Comparison study of compact plate fin-and-tube heat exchanger, ASHRAE Transactions, Vol. 104, No.2, pp. 548-555
  53. Wang, C. C., Chi, K. U., Chang, Y. P., and Chang, Y. J., 1998, An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers, Int. J. of Heat and Mass Transfer, Vol. 41, pp.817-822 https://doi.org/10.1016/S0017-9310(97)00154-3
  54. Wang, C. C., Chang, Y. P., Chi, K. U., and Chang, Y. J. 1998, Study of Non-redirection Louver Fin-and-Tube Heat Exchangers, Institute of Mechanical Engineering, Part C, Journal of Mechanical Engineering Science, Vol. 212, pp. 1-14 https://doi.org/10.1243/0954406981520999
  55. Wang, C. C., Lee, C. J., Chang, C. T., and Chang, Y. J., 1999, Some aspects of fin-and-tube heat exchangers: with and without louver fins, J. of Enhanced Heat Transfer, Vol. 6, pp. 357-368 https://doi.org/10.1615/JEnhHeatTransf.v6.i5.30
  56. Wang, C. C., Lee, C. J., Chang, C. T., and Lin, S.P., 1999, Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers, Int. J. of Heat and Mass Transfer, Vol. 42, pp. 1945-1956 https://doi.org/10.1016/S0017-9310(98)00302-0
  57. Wang, C. C., Lin, Y. T., and Lee, C. J., 2000, Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions, Int. J. of Heat and Mass Transfer, Vol. 43, pp.3443-3452 https://doi.org/10.1016/S0017-9310(99)00375-0
  58. Garimella, S., Coleman, J. W., and Wicht, A., 1997, Tube and fin geometry alternatives for the design of absorption-heat-pump heat exchangers, J. of Enhanced Heat Transfer, Vol. 4, pp.217-235 https://doi.org/10.1615/JEnhHeatTransf.v4.i3.50
  59. Wang, C. C., Tao, W. H., and Chang, C. J., 1999, An investigation of the airside performance of slit fin-and-tube heat exchanger, Int. J. of Refrigeration, Vol. 22, pp. 595-603 https://doi.org/10.1016/S0140-7007(99)00031-6
  60. Du, Y. J. and Wang, C. C., 2000, An experimental study of the airside performance of the superslit fin-and-tube heat exchangers, Int. J. Heat and Mass Transfer, Vol. 43, pp. 4475-4482 https://doi.org/10.1016/S0017-9310(00)00082-X
  61. Wang C. C., Lee W. S., and Sheu W. J., 2001, A comparative study of compact enhanced fin-and-tube heat exchangers, Int. J. of Heat and Mass Transfer, Vol. 44, pp. 3565-3573 https://doi.org/10.1016/S0017-9310(01)00011-4
  62. Wang, C. C., Lee, W. S., Sheu W. J. and Chang. Y. J., 2001, Parametric study of the airside performance of the slit fin-and-tube heat exchangers in wet condition, J. of Mechanical Engineering Science, Vol. 215, pp.1111-1121 https://doi.org/10.1177/095440620121500911
  63. Esformes, J. L., 1989, US patent 4817709
  64. Fibig, M., 1997, Vortices and heat transfer, ZAMM Z. angew Math. Mech., Vol. 77, No. 1, pp.3-18 https://doi.org/10.1002/zamm.19970770103
  65. Jacobi, A. M. and Shah, R. K., 1995, Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress, Experimental Thermal and Fluid Science, Vol. 11, pp.295-309 https://doi.org/10.1016/0894-1777(95)00066-U
  66. Edwards, F. J. and Alker, G. J. R., 1974, The Improvement of forced convection, surface heat transfer using surfaces protrusions in the form of (A) cubes and (B) vortex generators, in Proc. 5th Int. Heat Transfer Conf., Tokyo, Vol. 2, pp. 244-248
  67. Fibig, M., Kallweit, P., Mitra, N. K., and Tiggelbeck, S., 1991, Heat transfer enhancement and drag by longitudinal vortex generators in channel flow, Experimental Thermal and Fluid Science, Vol. 4, pp. 103-114 https://doi.org/10.1016/0894-1777(91)90024-L
  68. Tiggelbeck, S., Mitra, N. K., and Fibig, M., 1992, Flow structure and heat transfer in a channel with multiple longitudinal vortex generators, Experimental Thermal and Fluid Science, Vol. 5, pp. 425-436 https://doi.org/10.1016/0894-1777(92)90029-5
  69. Tiggelbeck, S., Mitra, N. K., and Fibig, M., 1993, Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators, Int. J. Heat and Mass Transfer, Vol. 36, pp.2327-2337 https://doi.org/10.1016/S0017-9310(05)80117-6
  70. Tiggelbeck, S., Mitra, N. K., and Fibig, M., 1994, Comparison of wing-type vortex generators for heat transfer enhancement in channel flows, J. of Heat Transfer, Vol. 116, pp.880-885 https://doi.org/10.1115/1.2911462
  71. Fibig, M., 1998, Vortices, generators and heat transfer, Trans. IChemE, Vol. 76, Part A, pp.108-123 https://doi.org/10.1205/026387698524686
  72. Biswas, G., Deb, P., and Biswas, S. 1994, Generation of longitudinal streamwise vortices - a device for improving heat exchangers design, ASME J. of Heat Transfer, Vol. 116, pp. 588-597 https://doi.org/10.1115/1.2910910
  73. Wang C. C., Lo J., Lin Y. T., and Liu, M. S., 2002, Flow visualization of wave-element vortex generators having fin-tube arrangement, Int. J. of Heat and Mass Transfer, Vol. 45, pp. 1933-1944 https://doi.org/10.1016/S0017-9310(01)00289-7
  74. Wang C. C., Lo J., Lin Y. T., and Wei C. S., 2002, Flow visualization of annular and triangular winglet vortex generators in fin-and-tube heat exchanger application, Int. J. of Heat and Mass Transfer, Vol. 45, pp. 3803-3815 https://doi.org/10.1016/S0017-9310(02)00085-6
  75. O'Brien J. E., Sohal M. S., and Wallstedt P. C., 2004, Local heat transfer and pressure drop for finned-tube heat exchangers using oval tubes and vortex generators, J. Heat Transfer, Vol. 26, pp. 826-835
  76. Min, J., Webb, R. L., and Bemisderfer, B., 2000, Long-term hydraulic performance of dehumidifying heat-exchangers with and without hydrophilic coatings, Int. J. of HVAC &R Research, Vol. 6, No.3, pp.257-272 https://doi.org/10.1080/10789669.2000.10391262
  77. Min, J. and Webb, R. L., 2000, Condensate carryover phenomena in dehumidifying, finned-tube heat-exchangers, Experimental Thermal and Fluid Science, Vol. 22, pp. 175-182 https://doi.org/10.1016/S0894-1777(00)00024-8
  78. Mimaki, M., 1987, Effectiveness of finned-tube heat exchanger coated hydrophilic-type film, ASHRAE Transactions, 1987, Vol. 93, No.1, pp.62-71
  79. Wang, C. C., Lee, W. S., Sheu W. J., and Chang, Y. J., 2002, A comparison of the airside performance of the slit fin-and-tube heat exchangers in wet condition; with and without hydrophilic coating, Applied Thermal Engineering, Vol. 22, pp.267-278 https://doi.org/10.1016/S1359-4311(01)00090-4
  80. Seshimo, Y., Ogawa, K., Marumoto, K., and Fujii, M., 1988, Heat and mass transfer performances on plate fin and tube heat exchangers with dehumidification, Transactions JSME Vol. 54, pp.716-721 https://doi.org/10.1299/kikaib.54.716
  81. Eckels, P. W. and Rabas, T. J., 1987, Dehumidification : on the correlation of wet and dry transport process in plate finned-tube heat exchangers, ASME Journal of Heat Transfer, Vol. 109, pp. 575-582 https://doi.org/10.1115/1.3248127
  82. Wang, C. C., 2007, On the heat and mass analogy of fin-and-tube heat exchanger, Int. J. of Heat and Mass Transfer, in press