• Title/Summary/Keyword: Technology Transfer Theory

Search Result 200, Processing Time 0.029 seconds

A Numerical Study on the Effect of Coefficient of Restitution to Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기 내의 열전달에 미치는 복원계수의 영향에 대한 수치해석 연구)

  • Kang, Seung Mo;Park, Woe-Chul;Abdelmotalib, Hamada;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, numerical simulations on conical fluidized bed combustors were carried out to estimate the effect of coefficients of restitution between particle and particle and particle to wall on hydrodynamics and heat transfer. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics and heat transfer in a conical fluidized bed combustor. The solid phase properties were calculated by applying the kinetic theory of granular flow. Simulations results show that increasing the restitution coefficient between the particle and particle results in increasing the bed pressure drop. On other hand, the increasing of particle to wall coefficient of restitution results in decreasing the bed pressure drop. It is found that the coefficient of restitution has little effect on heat transfer.

The Effective Risk Management of Academic Entrepreneurs' R&D Technology Transfer (학술적 기업가의 R&D 성과이전 위험의 효과적 관리)

  • Kim, Jai-Myung
    • Korean Business Review
    • /
    • v.16
    • /
    • pp.123-144
    • /
    • 2003
  • The transfer of R&D performance is the technology transfer in a narrow sense. This study aimed at fanning the effective managerial systems of the transfer of the academic entrepreneur's R&D performance. For this purpose, this study analysed the characteristics and success factors of R&D performance transfer based on the theory of project life cycle. This research classified the life cycle of academic entrepreneurs' R&D projects into six stages. And the risks associated with the transfer process was categorized using the case study about the establishing processes the mineral-related small finns. Especially, the risk of the technology transfer was investigated by the R&D project implementation stages. Based on this results, this paper suggested the strategic system such as the marketing-oriented thinking, the clear-cut statement of the role among the stake-holders of the R&D and commercialization processes, the dynamic system of the academic entrepreneurs' leadership, the formation of the transfer management system, and the usage of project risk management techniques.

  • PDF

Analysis of the Contactless Power Transfer System Using Modeling and Analysis of the Contactless Transformer

  • Ryu Myung-Hyo;Kim Jong-Hyun;Baek Ju-Won;Cha Hon-Nyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • In this paper, the electrical characteristics of the contactless transformer is presented using the conventional coupled inductor theory. Compared with the conventional transformer, the contactless transformer has a large airgap, long primary wire and multi-secondary wire. As such, the contactless transformer has a large leakage inductance, small magnetizing inductance and poor coupling coefficient. Therefore, large magnetizing currents flow through the entire primary system due to small magnetizing inductance, resulting in low overall system efficiency. In high power applications, the contactless transformer is so bulky and heavy that it needs to be split by some light and small transformers. So, the contactless transformer needs several small transformer modules that are connected in series or parallel to transfer the primary power to the secondary one. This paper shows the analysis and measurement results of each contactless transformer module and comparison results between the series- and parallel-connection of the contactless transformer. The results are verified on the simulation based on the theoretical analysis and the 30kW experimental prototype.

Mass and Heat Transfer Characteristics of Vertical Flat Plate with Free Convection

  • Kim Myoung- Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.729-735
    • /
    • 2005
  • This paper has dealt with the characteristics of mass and heat transfer of vertical flat plate with free convection. The theory of similarity transformations applied to the momentum and energy equations for free convection. To derive the similarity equation of mass transfer. the equation for conservation of species was added to the continuity. momentum and energy equations. The momentum, energy and species equations set numerically to obtain the velocity, temperature and mass fraction of species as dimensionless. For cases where momentum transport dominates, the thermal boundary layers are shorter than the momentum boundary layer. The relationships between momentum, energy and species were clarified from this study.

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Revision on the Frequency Domain Conditions for Strict Positive Realness

  • Moghaddam Mojtaba Hakimi;Khaloozadeh Hamid
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, the necessary and sufficient conditions for strict positive realness of the rational transfer functions directly from basic definitions in the frequency domain are studied. A new frequency domain approach is used to check if a rational transfer function is a strictly positive real or not. This approach is based on the Taylor expansion and the Maximum Modulus Principle which are the fundamental tools in the complex functions analysis. Four related common statements in the strict positive realness literature which is appeared in the control theory are discussed. The drawback of these common statements is analyzed through some counter examples. Moreover a new necessary condition for strict positive realness is obtained from high frequency behavior of the Nyquist diagram of the transfer function. Finally a more simplified and completed conditions for strict positive realness of single-input single-output linear time-invariant systems are presented based on the complex functions analysis approach.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

Prediction of Spectral Phonon Mean Free Path Contribution to Thermal Conduction in Silicon Using Phonon Kinetic Theory (포논 기체 운동론을 이용한 실리콘 내 포논 평균자유행로 스펙트럼 열전도율 기여도 예측)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.341-346
    • /
    • 2017
  • Knowing the mean free paths (MFPs) of thermal phonons is an essential step in performing heat transfer analysis for nanomaterials, and in determining the optimum design for tailoring the heat transfer characteristics of nanomaterials. In this study, we present a method that can be used to calculate accurately the phonon MFP spectra of nanostructures based on simple phonon kinetic theory. Here, the kinetic theory may be employed by extracting only the diffusive-transport part of the phonon spectrum (i.e., the MFPs are less than a thermal length). By considering phonon dispersion and polarization effects, the phonon MFP distributions of silicon at room temperature are calculated from phonon transport properties and the spectral MFP. Our results are validated by comparison with those of the first principle and MFP spectroscopy data.

Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed (풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF