DOI QR코드

DOI QR Code

Prediction of Spectral Phonon Mean Free Path Contribution to Thermal Conduction in Silicon Using Phonon Kinetic Theory

포논 기체 운동론을 이용한 실리콘 내 포논 평균자유행로 스펙트럼 열전도율 기여도 예측

  • Jin, Jae Sik (Dept. of Mechanical Design, Chosun College of Science & Technology)
  • 진재식 (조선이공대학교 기계설계과)
  • Received : 2016.12.21
  • Accepted : 2017.01.20
  • Published : 2017.05.01

Abstract

Knowing the mean free paths (MFPs) of thermal phonons is an essential step in performing heat transfer analysis for nanomaterials, and in determining the optimum design for tailoring the heat transfer characteristics of nanomaterials. In this study, we present a method that can be used to calculate accurately the phonon MFP spectra of nanostructures based on simple phonon kinetic theory. Here, the kinetic theory may be employed by extracting only the diffusive-transport part of the phonon spectrum (i.e., the MFPs are less than a thermal length). By considering phonon dispersion and polarization effects, the phonon MFP distributions of silicon at room temperature are calculated from phonon transport properties and the spectral MFP. Our results are validated by comparison with those of the first principle and MFP spectroscopy data.

본 연구는 해석적 접근이 용이한 실리콘 내 포논 평균자유행로(mean free path, MFP) 스펙트럼(spectrum) 열전도 특성 예측 모델을 제시했다. 해석이 용이한 포논 기체 운동론(kinetic theory)을 적용하기 위해, 나노구조물의 현상학적 접근으로 열전도에 관여하는 포논 모드(mode)들만 추출하고, 300 K의 실리콘에 대한 포논의 분산관계(dispersion relations) 및 분극(polarization) 효과가 고려된 포논의 주파수 변화에 따른 비열(specific heat)과 군속도(group velocity) 및 MFP 정보를 사용했다. 300 K의 실리콘 내 포논의 MFP 스펙트럼 열전도율 기여를 계산하고, 기존 실험결과 및 제1원리 기법 결과와 비교하여, 본 방법의 타당함을 보였다. 본 연구를 통해, 나노구조물 열전달 해석모델 개발 및 나노재료 열전달 특성 조정(tailoring) 전략 설계에 필요한 포논 MFP 스펙트럼 열전도 특성 정보를 해석이 용이한 방법으로 구할 수 있는 방법을 제공했다.

Keywords

References

  1. Tien, C. L., Majumdar, A. and Gerner, F. M., 1998, MICROSCALE ENERGY TRANSPORT, Taylor & Francis, Washington D. C., pp. 3-94.
  2. Chen, G., 2005, Nanoscale Energy Transport and Conversion, Oxford University Press, New York.
  3. Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, Mc Graw Hill, New York, pp. 162-182.
  4. Kim, W., 2015, "Strategies for Engineering Phonon Transport in Thermoelectrics," Journal of Materials Chemistry C, Vol. 3, No. 10, pp. 10336-10348.
  5. Minnich, A. J., 2015, "Advances in the Measurement and Computation of Thermal Phonon Transport Properties," Journal of Physics: Condensed Matter, Vol. 27, No. 5, Paper Number 053202.
  6. Park, H. J., Nah, J. H., Tutuc, E. and Seol, J. H., 2015, "Thermal Conductivity Measurement of Ge- SixGe1-x Core-Shell Nanowires Using Suspended Microdevices," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 10, pp. 825-829. https://doi.org/10.3795/KSME-B.2015.39.10.825
  7. Kang, H.-S., Koh, Y. H. and Jin, J. S., 2016, "A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 2, pp. 111-117. https://doi.org/10.3795/KSME-B.2016.40.2.111
  8. Jin, J. S., 2016, "Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 9, pp. 621-627. https://doi.org/10.3795/KSME-B.2016.40.9.621
  9. Siemens, M. E., Li, Q., Yang, R., Nelson, K. A., Anderson, E. H., Murnane, M, M. and Kapteyn, H. C., 2010, "Quasi-ballistic Thermal Transport from Nanoscale Interfaces Observed using Ultrafast Coherent Soft X-ray Beams," Nature Materials, Vol. 9, No. 1, pp. 26-30. https://doi.org/10.1038/nmat2568
  10. Maznev, A. A., Johnson, J. A. and Nelson, K. A., 2011, "Onset of Nondiffusive Phonon Transport in Transient Thermal Grating Decay," Physical Review B, Vol. 84, No. 19, Paper Number 195206.
  11. Minnich, A. J., Chen, G., Mansoor, S. and Yilbas, B. S., 2011, "Quasiballistic Heat Transfer Studied using the Frequency-dependent Boltzmann Transport Equation," Physical Review B, Vol. 84, No. 23, Paper Number 235207.
  12. Collins, K. C., Maznev, A. A., Tian, Z., Esfarjani, K., Nelson, K. A. and Chen, G., 2013, "Non-diffusive Relaxation of a Transient Thermal Grating Analyzed with the Boltzmann Transport Equation," Journal of Applied Physics, Vol. 114, No. 10, Paper Number 104302.
  13. Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., 2011, "Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths," Physical Review Letters, Vol. 107, No. 9, Paper Number 095901.
  14. Minnich, A. J., 2012, "Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport," Physical Review Letters, Vol. 109, No. 20, Paper Number 205901.
  15. Johnson, J. A., Maznev, A. A., Cuffe, J., Eliason, J. K., Minnich, A. J., Kehoe, T., Torres, C. M. S., Chen, G. and Nelson, K. A., 2013, "Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane," Physical Review Letters, Vol. 110, No. 2, Paper Number 025901.
  16. Wang, X. and Huang, B., 2014, "Computational Study of In-Plane Phonon Transport in Si Thin Films," Scientific Reports, Vol. 4, Paper Number 6399.
  17. Feng, T. and Ruan, X., 2014, "Prediction of Spectral Phonon Mean Free Path and Thermal Conductivity with Applications to Thermoelectrics and Thermal Management: A Review," Journal of Nanomaterials, Vol. 2014, Paper Number 206370.
  18. Maznev, A. A., 2013, "Onset of Size Effect in Lattice Thermal Conductivity of Thin Films," Journal of Applied Physics, Vol. 113, No. 11, Paper Number 113511.
  19. Jiang, P., Lindsay, L. and Koh, Y. K., 2016, "Role of Low-energy Phonons with Mean-free-paths $>0.8{\mu}m $ in Heat Conduction in Silicon," Journal of Applied Physics, Vol. 119, No. 24, Paper Number 245705.
  20. Esfarjani, K., Chen, G. and Stokes, H. T., 2011, "Heat Transport in Silicon from First-principles Calculations," Physical Review B, Vol. 84, No. 8, Paper Number 085204.
  21. Shiga, T., Aketo, D., Feng, L. and Shiomi, J., 2016, "Harmonic Phonon Theory for Calculating Thermal Conductivity Spectrum from First-principles Dispersion Relations," Applied Physics Letters, Vol. 108, No. 20, Paper Number 201903.
  22. Narumanchi, S. V. J., Murthy, J. Y. and Amon, C. H., 2004, "Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization," ASME Journal of Heat Transfer, Vol. 126, No. 6, pp. 946-955. https://doi.org/10.1115/1.1833367
  23. Jin, J. S., 2014, "Prediction of Phonon and Electron Contributions to Thermal Conduction in Doped Silicon Films," Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2287-2292. https://doi.org/10.1007/s12206-014-0518-3
  24. Hua, C. and Minnich, A. J., 2015, "Semi-analytical Solution to the Frequency-dependent Boltzmann Transport Equation for Cross-plane Heat Conduction in Thin Films," Journal of Applied Physics, Vol. 117, No. 17, Paper Number 175306.
  25. Lee, J., Lim, J. and Yang, P., 2015, "Ballistic Phonon Transport in Holey Silicon Nano Letters," Vol. 15, No. 5, pp. 3273-3279. https://doi.org/10.1021/acs.nanolett.5b00495
  26. Mittal, A. and Mazumder, S., 2010, "Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons," ASME Journal of Heat Transfer, Vol. 132, No. 5, Paper Number 052402.
  27. Pop, E., Dutton, R. W. and Goodson, K. E., 2005, "Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon," Applied Physics Letters, Vol. 86, No. 8, Paper Number 082101.
  28. Romano, G. and Grossman, J. C., 2015, "Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution," ASME Journal of Heat Transfer, Vol. 137, No. 7, Paper Number 071302.
  29. Yang, F. and Dames, C., 2013, "Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures," Physical Review B, Vol. 87, No. 3, Paper Number 035437.
  30. Cuffe, J., Eliason, J. K., Maznev, A. A., Collins, K. C., Johnson, J. A., Shchepetov, A., Prunnila, M., Ahopelto, J., Torres, C. M. S., Chen, G. and Nelson, K. A., 2015, "Reconstructing Phonon Mean-free-path Contributions to Thermal Conductivity using Nanoscale Membranes," Physical Review B, Vol. 91, No. 24, Paper Number 245423.
  31. Duda, J. C., Beechem, T. E., Smoyer, J. L., Norris, P. M. and Hopkins, P. E., 2010, "Role of Dispersion on Phononic Thermal Boundary Conductance," Journal of Applied Physics, Vol. 108, No. 7, Paper Number 073515.
  32. Jain, A., Yu, Y.-J. and McGaughey, A. J. H., 2013, "Phonon Transport in Periodic Silicon Nanoporous Films with Feature Sizes Greater Than 100 nm," Physical Review B, Vol. 87, No. 19, Paper Number 195301.
  33. Kremera, R. K., Grafa, K., Cardonaa, M., Devyatykh, G. G., Gusevb, A. V., Gibin, A. M., Inyushkinc, A. V., Taldenkovc, A. N. and Pohl, H.-J., 2004, "Thermal Conductivity of Isotopically Enriched 28Si: Revisited," Solid State Communications, Vol. 131, No. 8, pp. 499-503. https://doi.org/10.1016/j.ssc.2004.06.022