• Title/Summary/Keyword: Technology Assessment System

Search Result 2,035, Processing Time 0.03 seconds

Relationship between the Level of Depression and Facial EMG Responses Induced by Humor among Children (유머에 의해 유발된 아동의 안면근육반응과 우울 수준과의 관계)

  • Jang, Eun-Hye;Lee, Ju-Ok;Sohn, Sun-Ju;Lee, Young-Chang;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • The study is to examine relationship between the level of depression and facial EMG responses during the humor condition. Forty-three children(age range 22-49 years) participated in the study. The Korean Personality Inventory for Children(KPI-C) was used to measure the level of depression in children. While children were presented to audio-visual film clip inducing humor, facial EMG were measured on their faces(bilateral corrugators and orbicularis). A baseline state was measured during 60 seconds before the presentation of the stimulus, i.e., emotional state lasting 120 seconds. Participants were asked to report the intensity of their experienced emotion. The results of emotion assessment showed 95.3% appropriateness and 3.81 intensity on the 5 points Likert scale). Facial EMG showed a significant increase while participants experiencing humor compared to baseline state. Additionally, the result showed a negative correlation between right corrugator responses and the level of depression. The study findings showed the more children experienced depression, the less facial EMG activity they had while experiencing humor.

  • PDF

Development and Evaluation of a Left-Turn Actuated Traffic Signal Control Strategy using Image Detectors (영상검지기를 이용한 좌회전 감응식 신호제어전략 개발)

  • Eun, Ji-Hye;O, Yeong-Tae;Yun, Il-Su;Lee, Cheol-Gi;Kim, Nam-Seon;Han, Ung-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2011
  • This paper discusses a method for optimizing the semi-actuated traffic signal control system by adjusting the initial interval according to the number of vehicles waiting for the green light in the actuated phase. We also present a Left-Turn actuated traffic signal control strategy that examines the vehicular noise in the detection area and determines the phase extension and the gap-out. In order to detect the vehicles in real-time, an image detector's Video Image Tracking technology was adopted. A 'Zone in Zone'method was implemented, and the image detection area is segmented into three zones: 1) Zone1 for verifying a vehicles obligatory presence, 2) Zone2 for counting the standby vehicles, and 3) Zone3 for examining the number of vehicles that have passed. The on-site assessment of the Left Turn Actuated Control is carried out using CORSIM, and the results show that the Control Delay decreased by 23.10%, 15.06%, and 4.34% compared to the delays resulted from pre-timed control, semi-actuated control-1 and semi-actuated control-2 traffic signal control systems respectively. The Queue Time also decreased by 36.24%, 20.10% and the Total Time by 14.36%, 7.02% for the same scenario. Which clearly demonstrates the operational efficiency. A sensitivity analysis reveals that the improvement from the propose traffic control strategy tends to increase as the through traffic volume reaches a saturated condition and the left-turn traffic volume decreases.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

A Sub-grid Scale Estimation of Solar Irradiance in North Korea (북한지역 상세격자 디지털 일사량 분포도 제작)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Reliable information on the surface solar radiation is indispensable for rebuilding food production system in the famine plagued North Korea. However, transfer of the related modeling technology of South Korea is not possible simply because raw data such as solar radiation or sunshine duration are not available. The objective of this study is restoring solar radiation data at 27 synoptic stations in North Korea by using satellite remote sensing data. We derived relationships between MODIS radiation estimates and the observed solar radiation at 18 locations in South Korea. The relationships were used to adjust the MODIS based radiation data and to restore solar radiation data at those pixels corresponding to the 27 North Korean synoptic stations. Inverse distance weighted averaging of the restored solar radiation data resulted in gridded surfaces of monthly solar radiation for 4 decadal periods (1983-1990, 1991-2000 and 2001-2010), respectively. For a direct application of these products, we produced solar irradiance estimates for each sub-grid cell with a 30 m spacing based on a sun-slope geometry. These products are expected to assist planning of the North Korean agriculture and, if combined with the already prepared South Korean data, can be used for climate change impact assessment across the whole Peninsula.

Analysis of risk management system of GM crops in China for the development of global GM crops (글로벌 GM 작물 실용화를 위한 중국의 GM 작물 안전관리제도 분석)

  • Lee, Shin-Woo;Cho, Kwang-Soo;Wang, Zhi;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • We analysed the current status of development of GM crops and national biosafety framework including legislation-related agricultural GMO in China to provide the policy for the development of global GM crops in Korea. In China, several GM crops including cotton, petunia, tomato, sweet pepper, poplar, and papaya have been approved for commercialization and they have been cultivated at more than 4 million ha. In addition, GM rice and GM maize have also obtained approval for productive testing in 2009. China will be the first country to approve GM rice for commercialization. Prior to commercialization in China, all GM crops must be approved by government authority for biosafety assessment specified by national legislation including restricted field testing, enlarged field testing, productive testing and safety certificate. According to China's legislation, agricultural GMOs have been classified by research and testing, production and processing. All GMOs must go through 3 steps of field testing (restricted, enlarged and productive). Prior to conducting each field testing, it has to be approved by government authority. It is assumed that at least one to two years will be taken for each step of field testing (total 4 to 8 years to obtain the final safety certificate) along with a large amount of budget.

Development of a Framework for Evaluating Water Quality in Estuarine Reservoir Based on a Resilience Analysis Method (회복탄력성 분석 기반 담수호 수질 평가 프레임워크 개발)

  • Hwang, Soonho;Jun, Sang Min;Kim, Kyeung;Kim, Seok Hyun;Lee, Hyunji;Kwak, Jihae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.105-119
    • /
    • 2020
  • Although there have been a lot of efforts to improve water quality in the estuarine reservoir, overall the water quality problems of the estuarine reservoirs remain. So, it is essential to establish water quality management plans under a comprehensive understanding of the environmental characteristics of the estuarine reservoir. Therefore, in this study, a resilience analysis framework for evaluating the estuarine reservoir's water quality was suggested for improving existing assessment method for water quality management plan. First, as a result of analyzing the static resilience to each scenario, it was found that from the S3 scenario in which dredging was conducted considerably, the resilience of about 30% more than the current estuarine reservoir system was restored. Second, as a result of analyzing the dynamic resilience, if cost and time are considered, there is no significant difference in robustness and resourcefulness, so it can be seen that the resilience of the estuarine reservoir can be efficiently improved by simply performing dredging up to the level of Scenario 3. Finally, as a result of comparing static and dynamic resilience, since static resilience is only presented as a single value, the differences and characteristics of the resilience capacity of the estuarine reservoir might be overlooked only by the static resilience analysis. However, in the aspect that it is possible to interpret the internal recovery capacity of the estuarine reservoir in multiple ways with various indicators (robustness, redundancy, resourcefulness, rapidity), evaluating water quality based on dynamic resilience analysis is useful.

Analysis of Changes in the Learning Environments of Middle School Science Classes (중학교 과학 수업 학습 환경에 대한 변화 분석)

  • Lee, Jaebong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.5
    • /
    • pp.717-727
    • /
    • 2016
  • Using TIMSS survey data, we analyzed whether there were any significant changes in the learning environment of middle school science classes over the last 10 years. Our study selected questions from teachers and school principals' questionnaires and divided them by category: science class, teacher professional development, and school environment. The science class components were subdivided into three categories: science learning activities, evaluation, and homework. Within teacher professional development, the sub-categories included teacher training, collaboration to improve teaching, and teacher evaluation. School environment subdivided into two aspects, these being school characteristics and school system. Our research confirmed that there has been a positive change overall in learning environments. However, most classes are teacher-conducted and also teacher-oriented; the proportion of science investigation activities has declined compared against the prior ten years. Our study show that students do not engage in a range of inquiry-related activities. The questions on tests and examinations involve mostly knowledge application and understanding, although recent methods of evaluation show improvement. As for the science teachers, they participate in many professional development programs but focus on science content, science curriculum, and pedagogy. In addition, teachers do not have many opportunities to participate in the training to integrate information technology into science, science assessment, or improving students' critical thinking or inquiry skills. The teachers are satisfied with their profession, and the shortage of science resources does not seem to affect instruction.

Future Inundation Risk Evaluation of Farmland in the Moohan Stream Watershed Based on CMIP5 and CMIP6 GCMs (CMIP5 및 CMIP6 GCM 기반 무한천 유역 농경지 미래 침수 위험도 분석)

  • Jun, Sang Min;Hwang, Soonho;Kim, Jihye;Kwak, Jihye;Kim, Kyeung;Lee, Hyun Ji;Kim, Seokhyeon;Cho, Jaepil;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.131-142
    • /
    • 2020
  • The objective of this study was to evaluate future inundation risk of farmland according to the application of coupled model intercomparison project phase 5 (CMIP5) and coupled model intercomparison project phase 6 (CMIP6). In this study, future weather data based on CMIP5 and CMIP6 general circulation model (GCM) were collected, and inundation was simulated using the river modeling system for small agricultural watershed (RMS) and GATE2018 in the Tanjung district of the Moohan stream watershed. Although the average probable rainfall of CMIP5 and CMIP6 did not show significant differences as a result of calculating the probability rainfall, the difference between the minimum and maximum values was significantly larger in CMIP6. The results of the flood discharge calculation and the inundation risk assessment showed similar to trends to those of probability rainfall calculations. The risk of inundation in the future period was found to increase in all sub-watersheds, and the risk of inundation has been analyzed to increase significantly, especially if CMIP6 data are used. Therefore, it is necessary to consider climate change effects by utilizing CMIP6-based future weather data when designing and reinforcing water structures in agricultural areas in the future. The results of this study are expected to be used as basic data for utilizing CMIP6-based future weather data.

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

The Study on the Integrated Monitoring of Water Quantity and Quality Data (수량 및 수질관측 통합연계 운영 연구)

  • Yi, Jae-Eung;Kim, Mun-Mo;Park, Sung-Je
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.115-123
    • /
    • 2009
  • Integrated information to water quantity and quality is essential for planning water resources management as well as operating water-related infrastructures. Because data collection process including monitoring and maintenance is separated in different governmental agencies in Korea, integrating quantity and quality may provide effective and better management implementation. In this study, a number of suggestions regarding integration of water monitoring were concluded in terms of technological, legal and institutional implications. First, it is necessary to discuss national water monitoring plan, national water information management plan, agreement of standard terms of monitoring between ministries, and to revise the law(river law and water quality management law). Present stations for water monitoring should be used for both of quantity and quality monitoring. If station is newly installed or relocated, it is better that one single agency maintain monitoring frequency and data management as well. In addition, a monitoring protocol need to be agreed by each of parties. In order to develop integrated monitoring system, quality assurance of the collected data should be properly maintained. Since many purposes haven been concerned using of data analysis and assessment so far, it may not be easy to integrate water quantity and quality monitoring in a short period. However, the alternatives including enhancing institutional regulations and programs, advanced technology may promote an efficient integrated water monitoring.