• Title/Summary/Keyword: Technology Affinity

Search Result 569, Processing Time 0.022 seconds

An Investigation on the Relationships of Psychological Characteristics with Technology Affinity and Adoption Intention (소비자들의 보편적 기술에 대한 태도 및 심리적 특성이 기술 수용성에 미치는 영향에 관한 실증적 연구)

  • Kim, Young-Kyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.56-68
    • /
    • 2008
  • Technology adoption has been an important issue for researchers and practitioners. In this paper, we identified the relationships between intention of technology adoption and technological affinity and other psychometric characteristics. We believe that technology affinity may be one of the general psychometric traits of individuals, and thus people have a different affinity levels which may influence the technology adoption intention. As a result it was found that need for cognition and self efficacy had positive influence on technology affinity, and the affinity also positively affected adoption intention. In addition, it was also found that technology affinity displayed a mediating role for the consumers adoption intention with need for cognition and self efficacy.

  • PDF

Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on Monosaccharide Scaffolds: Stereochemistry and Lipophilicity

  • Lee, Woo-Sirl;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2286-2300
    • /
    • 2011
  • We synthesized eight G8 molecular transporters (MTs) based on 4 different monosaccharide scaffolds, and studied their biological properties with a special focus on possible mitochondrial targeting and tissue selectivity. The mitochondrial affinity of these MTs was found to be clearly related to the scaffold stereochemistry and also tenuously with the lipophilicity. It may be suggested that in the practical delivery strategy of drugs for the brain and mitochondrial diseases the BBB permeability and mitochondrial affinity should be considered as key parameters, and that an enhanced mitochondrial affinity appears possible by further research on the structure-property relationship of guanidine-rich molecular transporters.

In Vitro Selection of High Affinity DNA-Binding Protein Based on Plasmid Display Technology

  • Choi, Yoo-Seong;Joo, Hyun;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1022-1027
    • /
    • 2005
  • Based on plasmid display technology by the complexes of fusion protein and the encoding plasmid DNA, an in vitro selection method for high affinity DNA-binding protein was developed and experimentally demonstrated. The GAL4 DNA-binding domain (GAL4 DBD) was selected as a model DNA-binding protein, and enhanced green fluorescent protein (EGFP) was used as an expression reporter for the selection of target proteins. Error prone PCR was conducted to construct a mutant library of the model. Based on the affinity decrease with increased salt concentration, mutants of GAL4 DBD having high affinity were selected from the mutant protein library of protein-encoding plasmid complex by this method. Two mutants of (Lys33Glu, Arg123Lys, Ile127Lys) and (Ser47Pro, Ser85Pro) having high affinity were obtained from the first generation mutants. This method can be used for rapid in vitro selection of high affinity DNA-binding proteins, and has high potential for the screening of high affinity DNA-binding proteins in a sequence-specific manner.

4-Substituted-kynurenic Acid Derivatives:A Novel Class of NMDA Receptor Glycine Site Antagonists

  • Kim, Ran-Hee;Chung, Yong-Jun;Lee, Chang-Woo;Jae, Yang-Kong;Young, Sik-Jung;Seong, Churl-Min;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.351-357
    • /
    • 1997
  • A series of 4-substituted-kynurenic acid derivatives possessing several different substituents at C4-position which are consisted of both a flexible propyloxy chain and an adjunct several type of carbonyl groups has been synthesized and evaluated for their in vitro antagonist activity at the glycine site on the NMDA receptor. Of them, N-benzoylthiourea 15c and N-phenylthiourea 15a were found to have the best in vitro binding affinity with $IC_{50}$ of 3.95 and $6.04{\mu}M$, respectively. On the other hand, in compounds 12a-c and 13 the displacement of a thiourea group to an amide or a carbamate caused a significant decrease of the in vitro binding affinity. In the SAR study of the 4-substituted kynurenic acid derivatives, it was realized that the terminal substitution pattern on a flexible C4-propyloxy chain of kynurenic acid nucleus significantly influences on the binding affinity for glycine site; the binding affinity to the NMDA receptor might be increased by the introduction of a suitable electron rich substituent at C4 of kynurenic acid nucleus.

  • PDF

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

Bioelectrocatalyzed Signal Amplification for Affinity Interactions at Chemically Modified Electrodes

  • Hyun C. Yoon;Kim, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.107-111
    • /
    • 2004
  • A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amidoamine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.

Total Photoyields from CVD Diamond Surfaces and Their Electron Affinity

  • T.Ito;H.Yagi;N.Eimori;A.Hatta;A.Hiraki
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.21-23
    • /
    • 1997
  • Dependences of total photoyields on incident photon energies were measured using synchrotron radiation light for different chemical-vapor-deposited diamond with differently treated surface. Results show that a considerable amount of gap states are presented for as-grown specimens with H-terminated, that negative electron affinity (NEA) is realized for H-plasma-treated specimens, and that sufficient O-treatment to NEA specimens results in positive electron affinity. The observed electron affinity can be explained in terms of differences in strength of the surface dipole layer formed by difference in the electron negativity among C, H and O atoms.

  • PDF

A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis

  • Song, Shengnan;Zhang, Qian;Yang, Hang;Guo, Jia;Xu, Mingguo;Yang, Ningning;Yi, Jihai;Wang, Zhen;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.50.1-50.12
    • /
    • 2022
  • Background: There is an urgent need to find reliable and rapid bovine tuberculosis (bTB) diagnostics in response to the rising prevalence of bTB worldwide. Toll-like receptor 2 (TLR2) recognizes components of bTB and initiates antigen-presenting cells to mediate humoral immunity. Evaluating the affinity of antigens with TLR2 can form the basis of a new method for the diagnosis of bTB based on humoral immunity. Objectives: To develop a reliable and rapid strategy to improve diagnostic tools for bTB. Methods: In this study, we expressed and purified the sixteen bTB-specific recombinant proteins in Escherichia coli. The two antigenic proteins, MPT70 and MPT83, which were most valuable for serological diagnosis of bTB were screened. Molecular docking technology was used to analyze the affinity of MPT70, MPT83, dominant epitope peptide of MPT70 (M1), and dominant epitope peptide MPT83 (M2) with TLR2, combined with the detection results of enzyme-linked immunosorbent assay to evaluate the molecular docking effect. Results: The results showed that interaction surface Cα-atom root mean square deviation of proteins (M1, M2, MPT70, MPT83)-TLR2 protein are less than 2.5 A, showing a high affinity. It is verified by clinical serum samples that MPT70, MPT83, MPT70-MPT83 showed good diagnostic potential for the detection of anti-bTB IgG and M1, M2 can replace the whole protein as the detection antigen. Conclusions: Molecular docking to evaluate the affinity of bTB protein and TLR2 combined with ELISA provides new insights for the diagnosis of bTB.

Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on myo- and scyllo-Inositol Scaffolds: Stereochemistry Dependency

  • Ghosh, Subhash C.;Kim, Bo-Ram;Im, Jung-Kyun;Lee, Woo-Sirl;Im, Chang-Nim;Chang, Young-Tae;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3623-3631
    • /
    • 2010
  • We prepared several novel molecular transporters built on myo- and scyllo-inositol scaffolds with variations in the number of guanidine residues, linker chain lengths and patterns. Some of these transporters were found to localize in mitochondria, and the mitochondrial affinity seems to be substantially related to the scaffold stereochemistry.