• Title/Summary/Keyword: Technical Effect

Search Result 2,801, Processing Time 0.032 seconds

Catalytic Decomposition of Hydrogen Peroxide by Transition Metal Ions (금속 이온에 의한 과산화수소의 촉매분해)

  • Kim, Se-Jong;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.79-84
    • /
    • 2006
  • Hydrogen peroxide has been a bleaching chemical for varied pulp, especially mechanical and deinking pulp. It is catalytically decomposed by some transition metals in pulp slurry. In this paper, some metals which can be contained in pulp such as manganese, copper, iron, magnesium and calcium were used to investigate their effect on the decomposition of hydrogen peroxide. From the result, hydrogen peroxide was more decomposed in the order of Mn, Cu, $Fe^{3+}\;and\;Fe^{2+}$, while Mg and Ca had little effect on the decomposition of hydrogen peroxide. The effect of Mg/Mn ratio on the decomposition of hydrogen peroxide was also investigated. At the specific ratio of them(Mg/Mn=10), hindering effect of peroxide decomposition by Mg was decreased.

Effect of Substrate Structure on Flame Retardant Fixation and Ignition Characteristics of the Treated Paper(1) - Effect of filler and pre treated polyester fiber - (원지의 구조적 변화가 난연제의 정착과 난연 처리된 종이의 인화 특성에 미치는 영향(1) -충전제와 난연 전처리된 폴리에스테르 섬유의 효과 -)

  • 김병수;이승기;정현채
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.42-46
    • /
    • 2002
  • Wallpaper has been used for decorating wall with multifarious patterns and colors. Ignition characteristic of wallpapers depends upon the types of wallpapers and their components. Since the wallpaper is made of flammable cellulose fibers diverse materials are being used as flame retardant in producing wallpapers. In this paper the ignition characteristics wallpapers prepared with three different fillers and pretreated polyester fibers were examined. Also the effect of calendering on ignition characteristics was investigated. Commercial papers were used for checking the effect of calendering on the ignition characteristics of treated paper In this experiments, guanidine sulfomate was used as flame retardant.

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.

A Study on the Relationship between Mathematics and Major Subjects of Technical High School. - Focused on the Electronic subjects - (공업계 고등학교 수학교과와 전문교과간의 연계성에 관하여 - 전자과를 중심으로 -)

  • 조선기
    • Journal of the Korean School Mathematics Society
    • /
    • v.5 no.1
    • /
    • pp.135-145
    • /
    • 2002
  • Technical high school aims at educating students to acquire fundamental skill and technology required for being competent technicians, to be creative in adjusting themselves to the changing industrial society, and to do self-realization and find their ways toward the future on their own. To attain that goal and maximize learning effect, mathematics education is very important as prerequisite learning for technical subjects, as most technical courses in technical high school are basically based on mathematics. The purpose of this study was to discuss how mathematics education could be successfully linked to technical courses in an attempt to make it function properly as prerequisite learning for major subjects and facilitate students' technical learning. For that purpose, what problems the mathematics components of major subjects and the curriculum had was examined and the way to offer better education was presented. And there are some suggestions regarding mathematics education: First, technical mathematics should be newly inserted into technical high school curricula to help students learn major subjects in more efficient way. Second, most technical high schools are expected to just require tenth graders to complete a 10-stage mathematics course. In that case, they might find difficulties in learning major subjects when they are in their 11st and 12th grade. The curriculum should be designed to have 11st and 12th graders take mathematics education. Third, many students find a job after graduation, but the growing number of students go on to university to receive more education in the same field. Accordingly, there is a need to enlarge continuous progress plan, rather than completion-type one, to make students well-grounded technically. And mathematics should be taught in more classes as prerequisite subject for major courses. Fourth, mathematics elements necessary for each major subject should be outlined and announced to schools so that they could reorganize mathematics and major courses appropriately.

  • PDF

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

The effect of arch geometry on the structural behavior of masonry bridges

  • Altunisik, Ahmet C.;Kanbur, Burcu;Genc, Ali F.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1069-1089
    • /
    • 2015
  • Arch bridges consist of some important components for structural behavior such as arches, sidewalls, filling materials and foundations. But, arches are the most important part for this type of bridges. For this reason, investigation of arch is come into prominence. In this paper, it is aimed to investigate the arch thickness effect on the structural behavior of masonry arch bridges. For this purpose, Goderni historical arch bridge which was located in Kulp town, Diyarbakir, Turkey and the bridge restoration process has still continued is selected as an application. The construction year of the bridge is not fully known, but the date is estimated to be the second half of the 19th century. The bridge has two arches with the 0.52 cm and 0.69 cm arch thickness, respectively. Finite element model of the bridge is constructed with ANSYS software to reflect the current situation using relievo drawings. Then the arch thickness is changed by increasing and decreasing respectively and finite element models are reconstructed. The structural responses of the bridge are obtained for all arch thickness under dead load and live load. Maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the arch thickness effect. At the end of the study, it is seen that the maximum displacements, tensile stresses and strains have a decreasing trend, but compressive stress and strain have an increasing trend by the increasing of arch thickness.

Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters

  • Milanian, Farzad;Niri, Mahmood Zakeri;Najafi-Jilani, Ataollah
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.282-291
    • /
    • 2017
  • The main aim of this study is to investigate the effect of berm breakwater on wave run-up. A total of 200 numerical analysis tests have been carried out in this paper to investigate the effect of berm width, wave height, and wave period on the wave run-up, using an integrating technique of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD). Direct application of Navier Stokes equations within the berm width has been used to provide a more reliable approach for studying the wave run-up over berm breakwaters. A well tested Reynolds-averaged Navier-Stokes (RANS) code with the Volume of Fluid (VOF) scheme was adopted for numerical computations. The computational results were compared with theoretical data to validate the model outputs. Numerical results showed that the simulation method can provide accurate estimations for wave run-up over berm breakwaters. It was found that the wave run-up may be decreased by increasing the berm width up to about 36 percent. Furthermore, the wave run-up may increase by increasing the wave height and wave period up to about 53 and 36 percent, respectively. These results may convince the engineers to use this model for design of berm breakwater in actual scale by calculating the Reynolds numbers.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Effect of Asymmetric Hot Rolling on the Texture Evolution of Fe-3%Si Steel

  • Na, Tae-Wook;Park, Hyung-Ki;Park, Chang-Soo;Joo, Hyung-Don;Park, Jong-Tae;Han, Heung Nam;Hwang, Nong-Moon
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1369-1375
    • /
    • 2018
  • In Fe-3%Si steel, the hot rolling process affects not only the hot rolling texture but also the primary recrystallization texture. Here, the effect of asymmetric hot rolling was studied by comparing the difference in the texture evolved between asymmetric and symmetric hot rolling. The effect of asymmetric hot rolling on the texture of primary recrystallized Fe-3%Si steel was also studied. The symmetric hot rolling of Fe-3%Si steel produces a rotated cube texture at the center but Goss and copper textures near the surface. Asymmetric hot rolling tends to produce Goss and copper textures even at the center like the texture near the surface. After primary recrystallization, the dominant texture at the center changes from {001} <210> to {111} <112> and the new texture has a higher fraction of the grains which make the low energy boundary with Goss grains than that of symmetric hot rolling.

Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings

  • Yesilyurt, Ali;Zulfikar, Abdullah C.;Tuzun, Cuneyt
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.627-639
    • /
    • 2021
  • Fragility curves are being more significant as a useful tool for evaluating the relationship between the earthquake intensity measure and the effects of the engineering demand parameter on the buildings. In this paper, the effect of different site conditions on the vulnerability of the structures was examined through the fragility curves taking into account different strength capacities of the precast columns. Thus, typical existing single-story precast RC industrial buildings which were built in Turkey after the year 2000 were examined. The fragility curves for the three typical existing industrial structures were derived from an analytical approach by performing non-linear dynamic analyses considering three different soil conditions. The Park and Ang damage index was used in order to determine the damage level of the members. The spectral acceleration (Sa) was used as the ground motion parameter in the fragility curves. The results indicate that the fragility curves were derived for the structures vary depending on the site conditions. The damage probability of exceedance values increased from stiff site to soft site for any Sa value. This difference increases in long period in examined buildings. In addition, earthquake demand values were calculated by considering the buildings and site conditions, and the effect of the site class on the building damage was evaluated by considering the Mean Damage Ratio parameter (MDR). Achieving fragility curves and MDR curves as a function of spectral acceleration enables a quick and practical risk assessment in existing buildings.