• Title/Summary/Keyword: Teaching Method in Linear Algebra

Search Result 10, Processing Time 0.022 seconds

A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle (역사발생적 관점에서 본 행렬 지도의 재음미)

  • Cho, Seong-Min
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.99-114
    • /
    • 2009
  • Although they are interested in Linear Algebra not only in science and engineering but also in humanities and sociology recently, a study of teaching linear algebra is not relatively abundant because linear algebra was taken as basic course in colleges just for 20-30 years. However, after establishing The Linear Algebra Curriculum Study Group in January, 1990, a variety of attempts to improve teaching linear algebra have been emerging. This article looks into series of studies related with teaching matrix. For this the method for teaching the concepts of matrix in relation to historico-genetic principle looking through the process of the conceptual development of matrix-determinants, matrix-systems of linear equations and linear transformation.

  • PDF

Teaching Linear Algebra to High School Students

  • Choe, Young-Han
    • Research in Mathematical Education
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.

  • PDF

Research on Teaching of Linear Algebra Focused on the Solution in the System of Linear Equations (선형방정식계의 해법을 중심으로 한 선형대수에서의 교수법 연구)

  • Kang, Sun-Bu;Lee, Yong-Kyun;Cho, Wan-Young
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.323-335
    • /
    • 2010
  • Linear algebra is not only applied comprehensively in the branches of mathematics such as algebra, analytics, and geometry but also utilized for finding solutions in various fields such as aeronautical engineering, electronics, biology, geology, mechanics and etc. Therefore, linear algebra should be easy and comfortable for not only mathematics majors but also for general students as well. However, most find it difficult to learn linear algebra. Why is it so? It is because many studying linear algebra fail to achieve a correct understanding or attain erroneous concepts through misleading knowledge they already have. Such cases cause learning disability and mistakes. This research suggests more effective method of teaching by analyzing difficulty and errors made in learning system of linear equations.

  • PDF

New Learning Environment of Linear Algebra in Korea

  • Lee Sang-Gu;Han Yoonmee
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.59-68
    • /
    • 2005
  • We are introducing a new learning environment for linear algebra at Sungkyunkwan University, and this is changing our teaching methods. Korea's e-Campus Vision 2007 is a program begun in 2003, to equip lecture rooms with projection equipment, View cam, tablet PC and internet D-base. Now our linear algebra classes at Sungkyunkwan University can be taught in a modem learning environment. Lectures can easily being recorded and students can review them right after class. At Sungkyunkwan University almost $100\%$ of all large and medium size lecture rooms have been remodeled by Mar. 2005 and are in use. We introduce this system in detail and how this learning environment changed our teaching method. Analysis of the positive effect will be added.

  • PDF

Flipped Learning teaching model design and application for the University's "Linear Algebra" ('선형대수학' 플립드러닝(Flipped Learning) 강의 모델 설계 및 적용)

  • Park, Kyung-Eun;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.30 no.1
    • /
    • pp.1-22
    • /
    • 2016
  • We had a full scale of literature survey and case survey of mathematics Flipped Learning class models. The purpose of this study is to design and adopt a Flipped Learning 'Linear Algebra' class model that fis our need. We applied our new model to 30 students at S University. Then we analyzed the activities and performance of students in this course. Our Flipped Learning 'Linear Algebra' teaching model is followed in 3 stages : The first stage involved the students viewing an online lecture as homework and participating free question-answer by themselves on Q&A before class, the second stage involved in-class learning which researcher solved the students' Q&A and highlighted the main ideas through the Point-Lecture, the third stage involved the students participating more advanced topic by themselves on Q&A and researcher (or peers) finalizing students' Q&A. According to the survey, the teaching model made a certain contribution not only to increase students' participation and interest, but also to improve their communication skill and self-directed learning skill in all classes and online. We used the Purposive Sampling from the obtained data. For the research's validity and reliability, we used the Content Validity and the Alternate-Form Method. We found several meaningful output from this analysis.

Linear Algebra Class Model using Technology(Matlab) - LINEAR SUBSPACES OF $R^n$ - (시각화를 이용한 선형대수학 교수학습모델 - $R^n$의 부분공간 -)

  • Kim, Duk-Sun;Lee, Sang-Gu;Jung, Kyung-Hoon
    • Communications of Mathematical Education
    • /
    • v.21 no.4
    • /
    • pp.621-646
    • /
    • 2007
  • In our new learning environment, we were asked to change our teaching method in our Linear Algebra class. In mathematics class, we could use several math-softwares such as MATHEMATICA, MATLAB, MAPLE, Drive etc.. MATLAB was quite well fit with our Linear Algebra class. In this paper we introduce an efficient way of delivery on important concepts in linear algebra by using well-known MATLAB/ATLAST M-files which we downloded from http://www.umassd.edu/specialprograms/atlast/.

  • PDF

Teaching-Learning Method for Plane Transformation Geometry with Mathematica (평면변환기하에 있어서 Mathematica를 이용한 교수-학습방법)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2001
  • The world we live in is called the age of information. Thus communication and computers are doing the central role in it. When one studies the mathematical problem, the use of tools such as computers, calculators and technology is available for all students, and then students are actively engaged in reasoning, communicating, problem solving, and making connections with mathematics, between mathematics and other disciplines. The use of technology extends to include computer algebra systems, spreadsheets, dynamic geometry software and the Internet and help active learning of students by analyzing data and realizing mathematical models visually. In this paper, we explain concepts of transformation, linear transformation, congruence transformation and homothety, and introduce interesting, meaningful and visual models for teaching of a plane transformation geomeoy which are obtained by using Mathematica. Moreover, this study will show how to visualize linear transformation for student's better understanding in teaching a plane transformation geometry in classroom. New development of these kinds of teaching-learning methods can simulate student's curiosity about mathematics and their interest. Therefore these models will give teachers the active teaching and also give students the successful loaming for obtaining the concept of linear transformation.

  • PDF

Linear Algebra Teaching in the Digital Age (디지털 시대의 대학수학교육: 선형대수학을 중심으로)

  • Lee, Sang-Gu;Lee, Jae Hwa;Park, Kyung-Eun
    • Communications of Mathematical Education
    • /
    • v.31 no.4
    • /
    • pp.367-387
    • /
    • 2017
  • The educational environment in the digital age of the 21st century definitely affects teaching and learning methods to be changed. In addition, the perceptions and methods of mathematics education in the digital age have also been changing. This study proposes a university mathematics education model suitable for the digital age, which makes full use of the internet/digital environment and leads the students to participate in the learning processes. We apply the proposed model to Linear Algebra course, and present a concrete method of teaching and learning model including evaluation. This will be the first study on how to organize and operate digital courses in Korea in accordance with the mathematics education in the digital era which is rapidly spreading around the world.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Pedagogical Implications for Teaching and Learning Normal Distribution Curves with CAS Calculator in High School Mathematics (CAS 계산기를 활용한 고등학교 정규분포곡선의 교수-학습을 위한 시사점 탐구)

  • Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.177-193
    • /
    • 2010
  • The purpose of this study is to explore normal distribution in probability distributions of the area of statistics in high school mathematics. To do this these contents such as approximation of normal distribution from binomial distribution, investigation of normal distribution curve and the area under its curve through the method of Monte Carlo, linear transformations of normal distribution curve, and various types of normal distribution curves are explored with CAS calculator. It will not be ablt to be attained for the objectives suggested the area of probability distribution in a paper-and-pencil classroom environment from the perspectives of tools of CAS calculator such as trivialization, experimentation, visualization, and concentration. Thus, this study is to explore various properties of normal distribution curve with CAS calculator and derive from pedagogical implications of teaching and learning normal distribution curve.