• Title/Summary/Keyword: Taylor polynomial

Search Result 32, Processing Time 0.02 seconds

Polynomial Fuzzy Modelling and Trajectory Tracking Control of Wheeled Mobile Robots with Input Constraint (입력제한을 고려한 이동로봇의 다항 퍼지모델링 및 궤적추적제어)

  • Kim, Cheol-Joong;Chwa, Dong-Kyoung;Oh, Seong-Keun;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1827-1833
    • /
    • 2009
  • This paper deals with the trajectory tracking control of wheeled mobile robots with input constraint. The proposed method converts the trajectory tracking problem to the system stability problem using the control inputs composed of feedforward and feedback terms, and then, by using Taylor series, nonlinear terms in origin system are transformed into polynomial equations. The composed system model can make it possible to obtain the control inputs using numerical tool named as SOSTOOL. From the simulation results, the mobile robot can track the reference trajectory well and can have faster convergence rate of the trajectory errors than the existing nonlinear control method. By using the proposed method, we can easily obtain the control input for nonlinear systems with input constraint.

Anti-Sway Control of the Overhead Crane System using HOSM Observer

  • Kwon, Dongwoo;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1027-1034
    • /
    • 2016
  • This paper proposes a sum of squares (SOS) method for anti-swing control of overhead crane system using HOSM (High-Order Sliding-Mode) observer. By representing the dynamic equations of overhead crane as the polynomial dynamic equations via Taylor series expansion, the control input is obtained from the converted polynomial dynamic equations by numerical tool SOSTOOL. Since the actual crane systems include disturbance such as wind and friction, we propose a method to compensate for the disturbance by estimating the disturbance using HOSM observer. Numerical simulations show the effectiveness and the applicability of the proposed method.

Response Surface Modeling by Genetic Programming II: Search for Optimal Polynomials (유전적 프로그래밍을 이용한 응답면의 모델링 II: 최적의 다항식 생성)

  • Rhee, Wook;Kim, Nam-Joon
    • Journal of Information Technology Application
    • /
    • v.3 no.3
    • /
    • pp.25-40
    • /
    • 2001
  • This paper deals with the problem of generating optimal polynomials using Genetic Programming(GP). The polynomial should approximate nonlinear response surfaces. Also, there should be a consideration regarding the size of the polynomial, It is not desirable if the polynomial is too large. To build small or medium size of polynomials that enable to model nonlinear response surfaces, we use the low order Tailor series in the function set of GP, and put the constrain on generating GP tree during the evolving process in order to prevent GP trees from becoming too large size of polynomials. Also, GAGPT(Group of Additive Genetic Programming Trees) is adopted to help achieving such purpose. Two examples are given to demonstrate our method.

  • PDF

Enhanced Genetic Programming Approach for a Ship Design

  • Lee, Kyung-Ho;Han, Young-Soo;Lee, Jae-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • Recently the importance of the utilization of engineering data is gradually increasing. Engineering data contains the experiences and know-how of experts. Data mining technique is useful to extract knowledge or information from the accumulated existing data. This paper deals with generating optimal polynomials using genetic programming (GP) as the module of Data Mining system. Low order Taylor series are used to approximate the polynomial easily as a nonlinear function to fit the accumulated data. The overfitting problem is unavoidable because in real applications, the size of learning samples is minimal. This problem can be handled with the extended data set and function node stabilization method. The Data Mining system for the ship design based on polynomial genetic programming is presented.

Locally Weighted Polynomial Forecasting Model (지역가중다항식을 이용한 예측모형)

  • Mun, Yeong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.31-38
    • /
    • 2000
  • Relationships between hydrologic variables are often nonlinear. Usually the functional form of such a relationship is not known a priori. A multivariate, nonparametric regression methodology is provided here for approximating the underlying regression function using locally weighted polynomials. Locally weighted polynomials consider the approximation of the target function through a Taylor series expansion of the function in the neighborhood of the point of estimate. The utility of this nonparametric regression approach is demonstrated through an application to nonparametric short term forecasts of the biweekly Great Salt Lake volume.volume.

  • PDF

Approximate Analytical Formula for Minimum Principal Stress Satisfying the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식을 만족하는 최소주응력의 해석적 근사식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.480-493
    • /
    • 2021
  • Since the generalized Hoek-Brown criterion (GHB) provides an efficient way of identifying its strength parameter values with the consideration of in-situ rock mass condition via Geological Strength Index (GSI), this criterion is recognized as one of the standard rock mass failure criteria in rock mechanics community. However, the nonlinear form of the GHB criterion makes its mathematical treatment inconvenient and limits the scope of its application. As an effort to overcome this disadvantage of the GHB criterion, the explicit approximate analytical equations for the minimum principal stress, which is associated with the maximum principal stress at failure, are formulated based on the Taylor polynomial approximation of the original GHB criterion. The accuracy of the derived approximate formula for the minimum principal stress is verified by comparing the resulting approximate minimum principal stress with the numerically calculated exact values. To provide an application example of the approximate formulation, the equivalent friction angle and cohesion for the expected plastic zone around a circular tunnel in a GHB rock mass are calculated by incorporating the formula for the approximate minimum principal stress. It is found that the simultaneous consideration of the values of mi, GSI and far-field stress is important for the accurate calculation of equivalent Mohr-Coulomb parameter values of the plastic zone.

아르스 마그나와 프린키피아에 나오는 수치해석적 기법

  • 이무현
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • This paper explains methods of numerical analysis which appear on Cardano's Ars Magna and Newton's Principia. Cardano's method is secant method, but its actual al]plication is severely limited by technical difficulties. Newton's method is what nowadays called Newton-Raphson's method. But mysteriously, Newton's explanation had been forgotten for two hundred years, until Adams rediscovered it. Newton had even explained finding the root using the second degree Taylor's polynomial, which shows Newton's greatness.

  • PDF

COEFFICIENT ESTIMATES FOR GENERALIZED LIBERA TYPE BI-CLOSE-TO-CONVEX FUNCTIONS

  • Serap, Bulut
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.629-642
    • /
    • 2022
  • In a recent paper, Sakar and Güney introduced a new class of bi-close-to-convex functions and determined the estimates for the general Taylor-Maclaurin coefficients of functions therein. The main purpose of this note is to give a generalization of this class. Also we point out the proof by Sakar and Güney is incorrect and present a correct proof.

A Study on the Expanded Theory of Sequential Multiple-valued Logic Circuit (순서다치논리회로의 파장이론에 관한 연구)

  • 이동열;최승철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.580-598
    • /
    • 1987
  • This paper presents a method to realize the sequential multiple-valued Logic on Galois field. First, We develop so that Taylor series can be corresponded the irreducible polynomial to realize over the finite field, and produce the matrix. This paper object expanded a basic concept of the conbinational Logic circuit so as to apply in the sequential Logic circuit. First of all, We suggest a theory for constructing sequential multiple-valued Logic circuit. Then, We realized the construction with the single input and the multi-output that expanded its function construction. In case of the multi-output, the circuit process by the partition function concept as the mutual independent. This method can be reduced a enormous computer course to need a traditional extention that designed the sequential multi-valued Logic circuit.

  • PDF

Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • This paper presents a novel numerical method based on the extended moving least squares finite difference method(MLS FDM) for solving 1-D Stefan problem. The MLS FDM is employed for easy numerical modelling of the moving boundary and Taylor polynomial is extended using wedge function for accurate capturing of interfacial singularity. Difference equations for the governing equations are constructed by implicit method which makes the numerical method stable. Numerical experiments prove that the extended MLS FDM show high accuracy and efficiency in solving semi-infinite melting, cylindrical solidification problems with moving interfacial boundary.