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Locally Weighted Polynomial Forecasting Model

*
of o]
=

o

Ho

Moon, Young-Il

Abstract

Relationships between hydrologic variables are often nonlinear. Usually the functional form of
such a relationship is not known a priori. A multivariate, nonparametric regression methodology is
provided here for approximating the underlying regression function using locally weighted
polynomials. Locally weighted polynomials consider the approximation of the target function
through a Taylor series expansion of the function in the neighborhood of the point of estimate.
The utility of this nonparametric regression approach is demonstrated through an application to
nonparametric short term forecasts of the biweekly Great Salt Lake volume.
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1. Introduction

Short term forecasts of streamflow and lake
levels are made routinely by various methods
and are used to guide the operation of water
Recently, nonparametric
regression methods (Lall et al, in press;
Abarbanel et al, 1996, Kember et al, 1993;
Smith, 1991; Yakowitz and Karlsson, 1987)

have been proposed for forecasting hydrologic

resource facilities.

time series. Lall et al. (in press) were able to
forecast the volume of the Great Salt Lake
(GSL)  during conditions.  They
formulated a forecasting model using recent
techniques (Abarbanel et al, 1993) for
reconstructing the dynamics of a nonlinear

extreme

system from a single observed state variable.
Locally  Weighted
(LWPR) was used to nonparametrically recover
the nonlinear forecasting function from the

Polynomial  Regression

time series of GSL volume. Such methods for

time series analysis are computationally

intensive, and can also require long high
quality records.

Efficient parameter selection is important for

nonparametric  function approximation. The
strategy  provided here is capable of
automatically selecting the size of the

neighborhood and the order of the polynomial
used at each point of estimate. This allows one
to represent linear (e.g., classical AR models)
or polynomial dynamics, as well as locally
approximating more complex dynamics.

is presented that the
application of multivariate, locally weighted
with locally
parameters for nonparametrically approximating
the dynamics of the system at each point of
prediction. Blind forecasting the Great Salt
Lake volume up to four years using the
1847-1999 time series are presented.

In this paper, it

polynomial regression chosen
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2. Locally Weighted Polynomial
Forecasting Model

The forecast f(x,) at time T is obtained

through the solution to a general regression
model given as

Vi = f(Xi) + €; i=1:-n 8

where the function f(-) can be thought of
as a regression furnction.

A nonparametric regression problem results
if consider a solution of this problem such that
(1) no prior assumption is made about the
f(-), (2) the
f(+) at each
desired location, presuming that it belongs to a

explicit functional form of

interest is in approximating

fairly rich class of functions (e.g., differentiable
functions), and (3) the estimaze is “local,” ie.,
distant
regression at a given point diminishes with

the influence of points on the

distance. The target function f(:) may be
approximated at a point x, by retaining the
leading terms in its Taylor's series expansion.
This is equivalent to a low order polynomial
approximation of the function at that point
using k neighboring data poiats. The idea is
illustrated for the univariate case in Fig. 1.
The “damped” oscillation in Fig. 1 is
representative of the quasi-periodic oscillations
seen in the GSL data upon bandpassing it at
frequencies that have high spectral power. The
data generated
e; ~N(0,0.1). The
function f(x) is shown as the dashed line, and
the local regressions are shown as heavy solid
would be a d
state

(circles)  were using

0.2x

f(x) =sin(x) e ~"*, with

lines. For forecasting, x
dimensional vector in space, the
neighbors would be the closest points in IRY,
and a multivariate local regression will be
needed. In the multivariate case one uses k

neighbors x;, j=1-k, of X, in a
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True function f(x)
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using 8 neighbors at x=2.2
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x

Fig. 1. Local Linear and Local Quadratic Approximation of
f(x) = sin (x)e > at Two Points

vector space of dimension d, to evaluate a
low order polynomial regression using the
The k

found as the state vectors that are closest in

corresponding ;. neighbors are

distance to the vector x,. Thus, in the time
series context it is located the k data patterns
that are most similar to the state vector Vt,

evaluated a
regression with these data as an approximation

and low-order  polynomial

to f(v,). The state space coordinate v, are

defined as
Vt ={Xt. Kt—g, Xt—027, Xt—3z,00ennn , Xt_,(m—l)}
(2)
where 1t is a time delay and m 1is an

embedding dimension.

A detailed exposition of weighted local
regression may be found in Cleveland(1979),
Cleveland and Devlin (1983), Cleveland et al
(1988), and Lall et al. (in press). Localization of
the regression is achieved by using only k
neighbors of the prediction point, and also by
weighting the data with a monotonic weight
function, with weights decreasing as a function
of distance of the neighbor from the prediction
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point.

In this paper, locally linear (p=1), quadratic
(p=2), and quadratic with cross products (p=2')
are considered. Say Z is

data formed by
augmenting the matrix {x} 1, of k nearest

approximations

denoted as a matrix
neighbors of x, to complete a polynomial
basis of order p. If p=1, ie, a linear regression
is needed, then Z

{x} xn by a column with all entries equal to

is formed by augmenting
1, to represent the constant térm in the
regression. If p=2, one also adds the square of
each column of {x}, If p=2’, then the all
unique cross products across columns in
{x} x.n, are also added to Z. The number of
neighbors k considered ranges from 2Xxd’
to n, where d° is the column dimension of
Z. Thus global linear and quadratic models
are parts of the set considered. Any data

vector x; is similarly mapped into a data

matrix z;.
The order p weighted local regression using

k nearest neighbors is then defined through
the model



yv=7Z8+e (3)

kxd’
d’x1 vector of regression
kx1
residuals that are assumed to be independent

where y is a kX1 vector, Z is a
matrix, A

coefficients and e

is a
is a vector of
and locally homogeneous.

B are evaluated through
the solution of the weighted least squares

The coefficients

problem:

M/;n(y—ZB)TW(y ) (4)

which is given as
B= (Z2"WZ)" 'z wy &)

where W is the matrix for
estimation at z;.

then:

weight

The resulting forecast is

1(x) =1z.8 (6)

where Zn is the polynomial basis

representation of the prediction state vector

'

The quality of such a low-order weighted
polynomial approximation depends on the size
of the neighborhood and the order of the
polynomial. For a given order, as the size of
the neighborhood
estimate decreases while the bias of estimate

increases, the variance of
may increase. Likewise, increasing the order of
reduce the
while
variance of estimate if the number of points in
the neighborhood is kept the This
bias-variance trade-off suggests the possibility

the polynomial may bias or

approximation  error, increasing the

same

of searching for an optimal model for local
estimation by varying the order of the local
polynomial, and the size of the neighborhood.
Here, the parameter selection method is based

on Locally Generalized Cross Validation
(LGCV) (Moon, 1997; Lall et al, in press). The
LGCV score is then given as:

eTWe
(*55)

LGCV() = (N

where the errors e are the residues of the

model fitted over the k nearest neighbors;
W is the corresponding weigat matrix; d’ is
the number of coefficients fitted.

The appropriate values of k and p can then
be obtained as the ones that minimize the

LGCV score for the local regression.
3. Application

The primary application considered in this
paper is the forecast of the volume of the
Great Salt Lake at key points in time from its
1847-1999, biweekly time series. However, it
will begin by forecasts of data from two
itself that the

known models to assure

forecasting scheme can work.
3.1 Synthetic Series

The first scenario is a time series of length
200 from an AR(2), or autoregressive model of
lag 2. The model is defined by:

Vi = vi—1 — 0.5y + e (8)

where e, is a normally distributed random

variable with mean 0 and varience 1.

In this case, 7 =1 and vared m from 1 to
5 were selected. The number of nearest
neighbors to use was varied from 50 to the
sample length 200, and linear and quadratic
terms) fits were

(without product

considered from 1 to 20 various points in the

Cross

series. In all cases LGCV was used to select

the parameters of interest. The number of
nearest neighbors was consisiently picked as

the full sample size, m was typically picked
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Fig. 2. The Forecasts of Lorenz Data Starting from Index 1997

to be 2, and linear fits were always selected.
Since, the models selected were essentially
global, linear, autoregressive models each time,
the properties

satisfactory.

resulting  statistical were

3.2 Lorenz Equations

The Lorenz equations are given as :

x = —o(x+y)
vy =—-xz+rx—y 9
z =xy— bz

Here o¢=16, r=4592, b=4 and oJt=

0.05 were selected, and the x state variable
was sampled. This is a chaotic system, that
has been well studied by many investigators.
From prior work (Moon and Lall, 1996, Moon
1995) it was known that one should

T=2 4, m=4 to 6.
Consequently these values and k1=50
k2=150, and pl=1, p2=2 were

Forecasts from index 1996 of the

et al,

expect to and
to

investigated.
X time
series are presented in Fig. 2. No data after
index 1996 were used for the forecasts. The
dotted line represents the actual values while

the solid lines are the forecasted values (m=5,

#3348 HF15% 20004F 24

r=3, k=50 at the first 21 points, 90 or 150
at the rest of the points, and p=1 at the first 9
points, p=2 at the rest points). The divergence
of the forecasted and the observed trajectories
near index 2030, is characteristic of the loss of

predictability in the Lorenz system as
trajectories pass near the unstable point
(x=y=2z=0). The increase in k and p

after the first 20 points may reflect increasing
derivatives of f(V,) as one approaches the
origin.

The Lorenz system has an instability near
X =y = 2z =0. Trajectories that approach this
state tend to diverge rapidly. In Fig. 2, the

forecasts of the Lorenz X variable are quite
the trajectory passes near the
A small in the

value at index 1996 leads to the trajectories

good until
" unstable point. uncertainty
of the Lorenz
Thus  this
this  model.
Subsequent similarity in the forecast and actual

from the numerical simulation

equations  diverge  similarly.

divergence is intrinsic to

trajectories is coincidental.
3.3 Great Salt Lake Forecasts

The Great Salt Lake (GSL) (latitudes 40° 2
0" and 41° 40" N, and longitudes 111° 52" and
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Fig. 3. Biweekly Time Series of the Great Salt Lake, 1847-1999

113° 06" W) of Utah is a closed lake in the
lowest part (elevation 1280 m above Mean Sea
Level) of the Great Basin, in the arid Western
U.S.A. The GSL is approximately 113 km long
and 48 km wide, with a maximum depth of 13.1
m and an average depth of 5.0 m. The large
surface area and shallow depth make the lake
very sensitive to fluctuations in long term
climatic variability. Fluctuations of the GSL'’s
level are of direct concern to mineral industries
along the shore, the Salt Lake City airport, the
Union Pacific Railroad, and Interstate 0. They
are also well correlated with regional water
supply conditions. As shown in Fig. 3, the lake
volume has varied considerably over decadal
time scales during the last 150 years. The low
frequency character makes this an interesting
time series to forecast.

It was considered blind forecasts of the GSL
volume from different states for 1 year into
the future from the date of forecast. The
forecasted values are then compared with the
that
subsequently. In Fig. 4, the forecasted values

volumes were actually recorded
for a sequence of 1 year blind forecasts of the
GSL, from August 1977 to July 1987, are

presented. The dots represent the observed

36

GSL time series. The solid lines represent 12
forecasts, one for each month of the next year.
Only data available up to the beginning of the
forecast period is wused for fitting and
forecasting. Given the extreme nature of the
1983-87 period the predictions
quite good. Of particular interest is the forecast
starting in August 1983. The predictability is

quite poor for this forecast. The lag

appear .to be

r was
selected as 10 as in the range of the first
minimum of the average murual information
(Moon et al, 1995) and it was based on
experimentation to get the Dbest predictions
(min predictive squared error). An embedding
of m=5 was selected after experimentation
with various values in the range 1 to 9.
Usually, this value corresponded to the one
that minimized LGCV.

It was k1=50 to k2=150
nearest neighbors and typically selected 120 to
150. Locally (without

x—products) were consiclered. Typically

searched over

linear and quedratic
fits
linear was selected. The results are discussed
in the figures.

Finally, a forecast of the Great Salt Lake
volume for 4 years beginning Feb. 1999 is
presented in Fig. 5. The sclid line is the
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Fig. 4. A Sequence of 1 year Blind Forecasts of the GSL,
from August 1977 to July 1987
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Fig. 5. Forecasts for 4 Years Starting Feb. 1999

forecasted sequence while circles are the actual
series. Prediction intervals using LGCV for the
forecast are also shown.

4. Conclusions

The utility of a locally weighted polynomial
regression approach is demonstrated through an
application  to short  term
forecasts of the volume of the GSL. Locally
weighted polynomials consider the approximation

nonparametric

433348 15 20004F 24

of the target function through a Taylor series
expansion of the function in the neighborhood
of the point of estimate. This locally weighted
polynomial model is an useful tool for the GSL
series forecasting. However, the purpose of this
paper was in exploring the utility of the local
polynomial regression approach for the time
series  prediction. Applications to various
hydrologic time series forecasting and spatial

surface reconstruction are also in progress.
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