• Title/Summary/Keyword: Tau

Search Result 1,321, Processing Time 0.028 seconds

Crystal structures and magnetic properties of Mn-Al-M (M=Cu, Fe) alloys (Mn-Al-M(M=Cu, Fe) 합금계의 결정구조 및 자기적 성질)

  • Choe, Won-Gyu;Go, Gwan-Yeong;Yun, Seok-Gil
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • In this study, crystal structures and magnetic properties of as-ast, annealed and rapidly solidified Mn-A1-M( M=Cu, Fe) alloys have been investigated. In $Mn_{0.56}Al_{0.44}$ alloys, the largest fraction of $\tau$ phase and values of magnetic properties was obtained in Mnl, i6Alo or alloy. And this alloy was used as the basic composition. In $Mn_{0.56-X}M_{X}Al_{0.44}$ alloys, when annealed, $\tau$- and $\beta$-Mn phase appeared at x< 0.08, $\tau$- and $\kappa$ phase at 0.10 $\leq x \leq$ 0.12 and $\kappa$- phase only at 0.15 $\leq x \leq$0.20 . When rapidly solidified, specimens showed similar phases as when annealed except that $\varepsilon$ phase appeared at x=0.04. In Mnu FexAlo 44 alloys, asyast specimens showed $\tau$-, $\beta$-Mn and $\gamma_2$- phase at x<0.08 and K and $\beta$-Mn phase at x>0.10. When rapidly solidified, Mn-Fe-Al specimens showed $\varepsilon$-, $\gamma_2$- and small amount of $\tau$- and $\kappa$ phase at x<0.08 and $\kappa$- phase only at 0.$\leq x \leq$0.20. All the alloys investigated were ferromagnetic. The Curie temperature of annealed specimens and rapidly solidified of Mno 5sAlu 44 alloy were -650K and -644K. Spontaneous magnetization( UII of annealed and rapidly solidified specimens were 40-45 (emu/g) and 50-52(emu/g), respectively. Remanent (M,) to saturation magnetization( Ms) ratio was -0.7. M, of rapidly solidified specimen was about 48(emu/g). Magnetic properties of $Mn_{0.56}Al_{0.44}$ alloys were found to be determined by the relative fraction of ferromagnetic r- and K- phase. When M= Cu and x=0.15, maximum as($\sigma_{0.0}$) was obtained by about 64.3 emu/g), and when M=Fe and x=0.15, 66.4( emu/g). The Curie temperature decreased as x increased.

  • PDF

τ-CENTRALIZERS AND GENERALIZED DERIVATIONS

  • Zhou, Jiren
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.523-535
    • /
    • 2010
  • In this paper, we show that Jordan $\tau$-centralizers and local $\tau$-centralizers are $\tau$-centralizers under certain conditions. We also discuss a new type of generalized derivations associated with Hochschild 2-cocycles and introduce a special local generalized derivation associated with Hochschild 2-cocycles. We prove that if $\cal{L}$ is a CDCSL and $\cal{M}$ is a dual normal unital Banach $alg\cal{L}$-bimodule, then every local generalized derivation of above type from $alg\cal{L}$ into $\cal{M}$ is a generalized derivation.

Estimation of Conditional Kendall's Tau for Bivariate Interval Censored Data

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Kendall's tau statistic has been applied to test an association of bivariate random variables. However, incomplete bivariate data with a truncation and a censoring results in incomparable or unorderable pairs. With such a partial information, Tsai (1990) suggested a conditional tau statistic and a test procedure for a quasi independence that was extended to more diverse cases such as double truncation and a semi-competing risk data. In this paper, we also employed a conditional tau statistic to estimate an association of bivariate interval censored data. The suggested method shows a better result in simulation studies than Betensky and Finkelstein's multiple imputation method except a case in cases with strong associations. The association of incubation time and infection time from an AIDS cohort study is estimated as a real data example.

DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES

  • Kim, Dae-Yeoul;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.693-704
    • /
    • 2012
  • We consider Weierstrass functions and divisor functions arising from $q$-series. Using these we can obtain new identities for divisor functions. Farkas [3] provided a relation between the sums of divisors satisfying congruence conditions and the sums of numbers of divisors satisfying congruence conditions. In the proof he took logarithmic derivative to theta functions and used the heat equation. In this note, however, we obtain a similar result by differentiating further. For any $n{\geq}1$, we have $$k{\cdot}{\tau}_{2;k,l}(n)=2n{\cdot}E_{\frac{k-l}{2}}(n;k)+l{\cdot}{\tau}_{1;k,l}(n)+2k{\cdot}{\sum_{j=1}^{n-1}}E_{\frac{k-1}{2}(j;k){\tau}_{1;k,l}(n-j)$$. Finally, we shall give a table for $E_1(N;3)$, ${\sigma}(N)$, ${\tau}_{1;3,1}(N)$ and ${\tau}_{2;3,1}(N)$ ($1{\leq}N{\leq}50$) and state simulation results for them.

ALGEBRAIC NUMBERS, TRANSCENDENTAL NUMBERS AND ELLIPTIC CURVES DERIVED FROM INFINITE PRODUCTS

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.977-998
    • /
    • 2003
  • Let k be an imaginary quadratic field, η the complex upper half plane, and let $\tau$ $\in$ η $textsc{k}$, p = $e^{{\pi}i{\tau}}$. In this article, using the infinite product formulas for g2 and g3, we prove that values of certain infinite products are transcendental whenever $\tau$ are imaginary quadratic. And we derive analogous results of Berndt-Chan-Zhang ([4]). Also we find the values of (equation omitted) when we know j($\tau$). And we construct an elliptic curve E : $y^2$ = $x^3$ + 3 $x^2$ + {3-(j/256)}x + 1 with j = j($\tau$) $\neq$ 0 and P = (equation omitted) $\in$ E.

On a Class of γ*-pre-open Sets in Topological Spaces

  • Krishnan, G. Sai Sundara;Saravanakumar, D.;Ganster, M.;Ganster, M.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.173-188
    • /
    • 2014
  • In this paper, a new class of open sets, namely ${\gamma}^*$-pre-open sets was introduced and its basic properties were studied. Moreover a new type of topology ${\tau}_{{\gamma}p^*}$ was generated using ${\gamma}^*$-pre-open sets and characterized the resultant topological space (X, ${\tau}_{{\gamma}p^*}$) as ${\gamma}^*$-pre-$T_{\frac{1}{2}}$ space.

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF

SOLUTIONS OF HIGHER ORDER INHOMOGENEOUS PERIODIC EVOLUTIONARY PROCESS

  • Kim, Dohan;Miyazaki, Rinko;Naito, Toshiki;Shin, Jong Son
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1853-1878
    • /
    • 2017
  • Let $\{U(t,s)\}_{t{\geq}s}$ be a periodic evolutionary process with period ${\tau}$ > 0 on a Banach space X. Also, let L be the generator of the evolution semigroup associated with $\{U(t,s)\}_{t{\geq}s}$ on the phase space $P_{\tau}(X)$ of all ${\tau}$-periodic continuous X-valued functions. Some kind of variation-of-constants formula for the solution u of the equation $({\alpha}I-L)^nu=f$ will be given together with the conditions on $f{\in}P_{\tau}(X)$ for the existence of coefficients in the formula involving the monodromy operator $U(0,-{\tau})$. Also, examples of ODEs and PDEs are presented as its application.