τ-CENTRALIZERS AND GENERALIZED DERIVATIONS

Jiren Zhou

Abstract

In this paper, we show that Jordan τ-centralizers and local τ-centralizers are τ-centralizers under certain conditions. We also discuss a new type of generalized derivations associated with Hochschild 2-cocycles and introduce a special local generalized derivation associated with Hochschild 2-cocycles. We prove that if \mathcal{L} is a CDCSL and \mathcal{M} is a dual normal unital Banach alg \mathcal{L}-bimodule, then every local generalized derivation of above type from $\operatorname{alg} \mathcal{L}$ into \mathcal{M} is a generalized derivation.

1. Introduction

Let \mathcal{A} be an algebra with identity and let τ be an endomorphism of \mathcal{A}.
A linear mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called a left (right) centralizer of \mathcal{A} if $f(y)=$ $f(1) y(f(y)=y f(1))$ for any $y \in \mathcal{A}$. If f is a left and right centralizer, then it is to call f a centralizer. A linear mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called a left (right) Jordan centralizer of \mathcal{A} if $f\left(x^{2}\right)=f(x) x\left(f\left(x^{2}\right)=x f(x)\right)$ for any $x \in \mathcal{A} . f$ is called a Jordan centralizer of \mathcal{A} if $f(x y+y x)=f(x) y+y f(x)=f(y) x+x f(y)$ for any $x, y \in \mathcal{A}$. In [8], Zalar shows that a left Jordan centralizer of a semiprime ring is a left centralizer and each Jordan centralizer of a semiprime ring is a centralizer.

A linear mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called a left (right) τ-centralizer of \mathcal{A} if $f(y)=f(1) \tau(y)(f(y)=\tau(y) f(1))$ for any $x, y \in \mathcal{A}$. If f is a left and right τ-centralizer, then it is to call f a τ-centralizer. A linear mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called a left (right) Jordan τ-centralizer of \mathcal{A} if $f\left(x^{2}\right)=f(x) \tau(x)\left(f\left(x^{2}\right)=\right.$ $\tau(x) f(x))$ for any $x \in \mathcal{A} . f$ is called a Jordan τ-centralizer of \mathcal{A} if

$$
f(x y+y x)=f(x) \tau(y)+\tau(y) f(x)=f(y) \tau(x)+\tau(x) f(y)
$$

for any $x, y \in \mathcal{A}$. Albaş [1] shows that under some conditions, a left Jordan τ-centralizer of a semiprime ring is a left τ-centralizer and each Jordan τ centralizer of a semiprime ring is a τ-centralizer.

We call f a local left centralizer of \mathcal{A} if for each $x \in \mathcal{A}$, there is a left centralizer f_{x} of \mathcal{A} such that $f(x)=f_{x}(x)$. Similarly, we can define local right

[^0]centralizer and local centralizer. In [2], Hadwin studies local centralizers on von Neumann algebras and nest algebras.

Recently, Nakajima introduced the following definitions. Let \mathcal{A} be an algebra and \mathcal{M} be an \mathcal{A}-bimodule. Let $\alpha: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ be a bilinear mapping. α is called a Hochschild 2-cocycle if

$$
\begin{equation*}
x \alpha(y, z)-\alpha(x y, z)+\alpha(x, y z)-\alpha(x, y) z=0 . \tag{1}
\end{equation*}
$$

A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{M}$ is called a generalized derivation if there is a 2-cocycle α such that

$$
\begin{equation*}
\delta(x y)=\delta(x) y+x \delta(y)+\alpha(x, y) \tag{2}
\end{equation*}
$$

We denote it by (δ, α). In [7], Nakajima shows that the usual generalized derivation, left centralizer and (σ, τ)-derivation are also generalized derivations in above sense.

The distribution of this paper is as follows.
In Section 2, we prove that if $\mathcal{A}^{\prime} \cap \mathcal{A}=\mathbb{C} I$, and τ is an epimorphism of \mathcal{A}, then each Jordan τ-centralizer of \mathcal{A} is τ-centralizer. And we also show that if \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg} \mathcal{L}$, then each Jordan τ-centralizer of $\operatorname{alg} \mathcal{L}$ is τ-centralizer.

We introduce the following definition. We call f a local left τ-centralizer of \mathcal{A} if for each $x \in \mathcal{A}$, there is a left τ-centralizer f_{x} of \mathcal{A} such that $f(x)=f_{x}(x)$. Similarly, we can define local right τ-centralizer and local τ-centralizer. In Section 3, we generalize some results of [2] to local τ-centralizer. And we show that if \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg} \mathcal{L}$, then each local τ-centralizer of $\operatorname{alg} \mathcal{L}$ is a τ-centralizer.

In Section 4, we introduce a new type of local generalized derivations and we show that every local generalized derivation of above type from CDCSL into its dual normal unital Banach \mathcal{A}-bimodule is a generalized derivation.

The following notations will be used in our paper.
Let X be a complex Banach space with dual X^{*} and let $B(X)$ be the set of all bounded linear maps from X into itself. Let H be a complex separable Hilbert space.

A subspace lattice on X is a collection \mathcal{L} of subspaces of X with (0), X in \mathcal{L} and such that for every family $\left\{M_{r}\right\}$ of elements of \mathcal{L}, both $\wedge M_{r}$ and $\vee M_{r}$ belong to \mathcal{L}, where $\wedge M_{r}$ denotes the intersection of $\left\{M_{r}\right\}$ and $\vee M_{r}$ denotes the closed linear span of $\left\{M_{r}\right\}$. A totally ordered subspace lattice is called a nest. For a subspace lattice \mathcal{L}, we define $\operatorname{alg} \mathcal{L}$ by

$$
\operatorname{alg} \mathcal{L}=\{T \in B(H): T N \subseteq N, \forall N \in \mathcal{L}\}
$$

For any $L \subseteq X, L^{\perp}=\left\{f \in X^{*}, f(x)=0\right.$ for all $\left.x \in L\right\}$. Let $x \in X, f \in X^{*}$ be nonzero. The rank one operator $x \otimes f$ is defined by $z \rightarrow f(z) x$ for any $z \in X$. For any nonzero $x, y \in H$, the operator $x \otimes y$ is defined by $z \rightarrow(z, y) x$ for any $z \in H$. If \mathcal{L} is a subspace lattice of X and $E \in \mathcal{L}$, we define

$$
E_{-}=\vee\{F \in \mathcal{L}, F \nsupseteq E\} \text { and } E_{+}=\wedge\{F \in \mathcal{L}, F \nsubseteq E\}
$$

It is well known that $x \otimes f \in \operatorname{alg} \mathcal{L}$ if and only if there is $E \in \mathcal{L}$ such that $x \in E$ and $f \in\left(E_{-}\right)^{\perp}$ (equivalently, $x \in E_{+}$and $f \in E^{\perp}$).

A subspace lattice \mathcal{L} is said to be completely distributive if for every family $\left\{X_{i, j}\right\}_{i \in I, j \in J}$ of elements in \mathcal{L},

$$
\bigwedge_{i \in I} \bigvee_{j \in J} x_{i, j}=\bigvee_{f \in J_{I}} \bigwedge_{i \in I} x_{i, f(i)} \text { and } \bigvee_{i \in I} \bigwedge_{j \in J} x_{i, j}=\bigwedge_{f \in J_{I}} \bigvee_{i \in I} x_{i, f(i)}
$$

where J_{I} denotes the set of all maps from I into J.
A Hilbert space subspace lattice \mathcal{L} is called a commutative subspace lattice (CSL) if it consists of mutually commuting projections. If \mathcal{L} is a commutative subspace lattice, then $\operatorname{alg} \mathcal{L}$ is called a $C S L$ algebra. If \mathcal{L} is a completely distributive commutative subspace lattice (CDCSL), then $\operatorname{alg} \mathcal{L}$ is called a $C D C S L$ algebra.

Given a subspace lattice \mathcal{L} on X, put

$$
\mathcal{J}_{\mathcal{L}}=\left\{K \in \mathcal{L}: K \neq\{0\} \text { and } K_{-} \neq X\right\} .
$$

Call \mathcal{L} a \mathcal{J}-subspace lattice on X if it satisfies the following conditions:
(1) $\vee\left\{K: K \in \mathcal{J}_{\mathcal{L}}\right\}=X$;
(2) $\wedge\left\{K_{-}: K \in \mathcal{J}_{\mathcal{L}}\right\}=\{0\}$;
(3) $K \vee K_{-}=X$ for any $K \in \mathcal{J}_{\mathcal{L}}$;
(4) $K \wedge K_{-}=0$ for any $K \in \mathcal{J}_{\mathcal{L}}$.

In this paper, we suppose that \mathcal{A} is a unital algebra and \mathcal{M} is a unital \mathcal{A}-bimodule.

2. Jordan τ-centralizers

Since the proof of the following lemma is analogous to that of [1, Lemma 3], we omit it.

Lemma 2.1. Let f be a left Jordan τ-centralizer of an algebra \mathcal{A}. Then
(1) $f(x y+y x)=f(x) \tau(y)+f(y) \tau(x)$ for all $x, y \in \mathcal{A}$,
(2) $f(x y x)=f(x) \tau(y) \tau(x)$ for all $x, y \in \mathcal{A}$,
(3) $f(x y z+z y x)=f(x) \tau(y) \tau(z)+f(z) \tau(y) \tau(x)$ for all $x, y \in \mathcal{A}$,
(4) $D(x, y)=-D(y, x)$, where $D(x, y)=f(x y)-f(x) \tau(y)$ for all $x, y \in \mathcal{A}$.

Lemma 2.2. Each left Jordan τ-centralizer f of a unital algebra \mathcal{A} is a left τ-centralizer.

Proof. Let I be the identity in \mathcal{A}. Since τ is an endomorphism of \mathcal{A}, it follows that $\tau(I)=I$. Let $D(x, y)=f(x y)-f(x) \tau(y)$ for any $x, y \in \mathcal{A}$. So $D(x, I)=$ $f(x I)-f(x) \tau(I)=0$ for all $x \in \mathcal{A}$. By Lemma 2.1(4), we have that $D(I, x)=$ $-D(x, I)=0$ for all $x \in \mathcal{A}$. Thus

$$
\begin{equation*}
f(x)=f(I x)=f(I) \tau(x) \tag{3}
\end{equation*}
$$

for all $x \in \mathcal{A}$.

In what follows, we suppose that \mathcal{A} is a unital subalgebra of $B(X)$ such that $\mathcal{A}^{\prime} \cap \mathcal{A}=\mathbb{C} I$, where I is the identity in \mathcal{A}, and τ is an epimorphism of \mathcal{A}. And we denote by $Z=\mathcal{A}^{\prime} \cap \mathcal{A}=\mathbb{C} I$ the center of \mathcal{A}.
Lemma 2.3. Let a be a fixed element in \mathcal{A}. If a $\tau(x)-\tau(x) a \in Z$ for all $x \in \mathcal{A}$, then $a \in Z$.

Proof. Since $a \tau(x)-\tau(x) a \in \mathbb{C} I$, by [4, Question 182], it follows that $a \tau(x)-$ $\tau(x) a=0$. Since τ is surjective, we have that $a \in Z$.
Lemma 2.4. Let a be a fixed element in \mathcal{A}, and $f(x)=a \tau(x)+\tau(x)$ a for any $x \in \mathcal{A}$. If f is a Jordan τ-centralizer of \mathcal{A}, then $a \in Z$.

Proof. Since f is a Jordan τ-centralizer of \mathcal{A}, it follows that $f(x y+y x)=$ $f(x) \tau(y)+\tau(y) f(x)$ for all $x, y \in \mathcal{A}$. Hence

$$
\begin{aligned}
a \tau(x y+y x)+\tau(x y+y x) a & =(a \tau(x)+\tau(x) a) \tau(y)+\tau(y)(a \tau(x)+\tau(x) a), \\
a \tau(y) \tau(x)+\tau(x) \tau(y) a & =\tau(x) a \tau(y)+\tau(y) a \tau(x), \\
\tau(x)(a \tau(y)-\tau(y) a) & =(a \tau(y)-\tau(y) a) \tau(x)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$. Since τ is surjective, we have that $a \tau(y)-\tau(y) a \in Z$. Hence $a \in Z$ by Lemma 2.3.

Lemma 2.5. Every Jordan τ-centralizer f of \mathcal{A} maps Z into Z.
Proof. For any $c \in Z$, let $a=f(c)$. Since f is a Jordan τ-centralizer of \mathcal{A}, we have that

$$
2 f(c x)=f(c x+x c)=f(c) \tau(x)+\tau(x) f(c)=a \tau(x)+\tau(x) a
$$

for all $x \in \mathcal{A}$. Let $g(x)=2 f(c x)$. Then

$$
\begin{aligned}
g(x y+y x) & =2 f(c(x y+y x))=2 f(c x y+y c x) \\
& =2(f(c x) \tau(y)+\tau(y) f(c x))=g(x) \tau(y)+\tau(y) g(x) \\
g(x y+y x) & =2 f(c(x y+y x))=2 f(x c y+c y x) \\
& =2(f(c y) \tau(x)+\tau(x) f(c y))=g(y) \tau(x)+\tau(x) g(y)
\end{aligned}
$$

for any $x, y \in \mathcal{A}$. Thus, we have that g is a Jordan τ-centralizer of \mathcal{A}. By Lemma 2.4, we have $a=f(c) \in Z$ for all $c \in Z$.

Theorem 2.6. Each Jordan τ-centralizer f of \mathcal{A} is τ-centralizer.
Proof. By Lemma 2.5, we have that

$$
2 f(x)=f(x I+I x)=f(I) \tau(x)+\tau(x) f(I)=2 f(I) \tau(x)=2 \tau(x) f(I)
$$

for all $x \in \mathcal{A}$. Thus

$$
f(x)=f(I) \tau(x)=\tau(x) f(I)
$$

for all $x \in \mathcal{A}$.
Corollary 2.7. Let \mathcal{L} be a nest on X and let τ be an epimorphism of alg \mathcal{L}. Then each Jordan τ-centralizer of alg \mathcal{L} is τ-centralizer.

Proof. Since \mathcal{L} is a nest on X, we have that $(\operatorname{alg} \mathcal{L})^{\prime}=\mathbb{C} I$. By Theorem 2.6, we conclude the proof.

Definition 2.8. Let \mathcal{L} be a subspace lattice on X and $L \in \mathcal{L} . L$ is said to be a comparable element of \mathcal{L} if for any $M \in \mathcal{L}, L \subseteq M$ or $L \supset M$.

Lemma 2.9 ([6, Proposition 2.9]). Suppose that \mathcal{L} is a subspace lattice on X with a nontrivial comparable element M. If there is a subspace N of X such that $X=M \oplus N$, then $(\operatorname{alg} \mathcal{L})^{\prime}=\mathbb{C} I$.

By Theorem 2.6 and Lemma 2.9, we can show the following result.
Corollary 2.10. Let \mathcal{L} be a subspace lattice on X with a nontrivial comparable element M. If there is a subspace N of X such that $X=M \oplus N$ and τ is a surjective endomorphism of $\operatorname{alg} \mathcal{L}$, then each Jordan τ-centralizer of $\operatorname{alg} \mathcal{L}$ is a τ-centralizer.
Remark 2.11. Let $\mathcal{L}=\{(0), K, L, M, X\}$ be a pentagonal lattice on X. Then $(\operatorname{alg} \mathcal{L})^{\prime}$ is trivial. Hence, by Theorem 2.6, we have that each Jordan τ-centralizer of alg \mathcal{L} is τ-centralizer.

In the following, we give a result of an algebra \mathcal{A} such that the center of \mathcal{A} $\neq \mathbb{C} I$.

Lemma 2.12. Suppose that \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg} \mathcal{L}$. Then every Jordan τ-centralizer f of $\operatorname{alg} \mathcal{L}$ maps I into the center Z.
Proof. Let $e=e^{2} \in \operatorname{alg} \mathcal{L}$. Since τ is an automorphism of $\operatorname{alg} \mathcal{L}$, it follows that $P=\tau^{-1}(e)$ such that $P=P^{2} \in \operatorname{alg} \mathcal{L}$. Since f is a Jordan τ-centralizer, it follows that

$$
\begin{gather*}
2 f(P)=f(P I+I P)=f(I) \tau(P)+\tau(P) f(I) \tag{4}\\
2 f(P)=f\left(P^{2}+P^{2}\right)=f(P) \tau(P)+\tau(P) f(P) \tag{5}
\end{gather*}
$$

Thus

$$
\begin{align*}
\tau(P) f(P) \tau(P) & =\tau(P) f(I) \tau(P) \tag{6}\\
f(P) \tau(P)=\tau(P) f(P) & =\tau(P) f(P) \tau(P) \tag{7}
\end{align*}
$$

By (4), (5), (6), (7), we have that

$$
\begin{aligned}
& f(I) \tau(P)=2 f(P) \tau(P)-\tau(P) f(I) \tau(P)=\tau(P) f(P) \tau(P) \\
& \tau(P) f(I)=2 \tau(P) f(P)-\tau(P) f(I) \tau(P)=\tau(P) f(P) \tau(P)
\end{aligned}
$$

It follows that $f(I) \tau(P)=\tau(P) f(I)$. Thus $f(I) e=e f(I)$ for any $e=e^{2} \in$ $\operatorname{alg} \mathcal{L}$. By [3, Lemma 2.3], for any $x \otimes y \in \operatorname{alg} \mathcal{L}, x \otimes y \in \operatorname{span}\left\{e \in \operatorname{alg} \mathcal{L}, e=e^{2}\right\}$. We have that

$$
f(I)(x \otimes y)=(x \otimes y) f(I)
$$

Let $\mathcal{R}_{1}(\operatorname{alg} \mathcal{L})$ be the algebra generated by all of rank one operators of $\operatorname{alg} \mathcal{L}$. By [5, Theorem 3],

$$
{\overline{\mathcal{R}_{1}(\operatorname{alg} \mathcal{L})}}^{S O T}=\operatorname{alg} \mathcal{L}
$$

It follows that $f(I) T=T f(I)$ for any T in $\operatorname{alg} \mathcal{L}$. So $f(I) \in Z$.
Theorem 2.13. If \mathcal{L} is a $C D C S L$ on H and τ is an automorphism of $\operatorname{alg} \mathcal{L}$, then each Jordan τ-centralizer of $\operatorname{alg} \mathcal{L}$ is τ-centralizer.
Proof. Let f be a Jordan τ-centralizer of $\operatorname{alg} \mathcal{L}$. We have that

$$
2 f(x)=f(I x+x I)=f(I) \tau(x)+\tau(x) f(I)
$$

By Lemma 2.12, $f(I) \in Z$, it follows that $f(I) \tau(x)=\tau(x) f(I)$. Thus $f(x)=$ $f(I) \tau(x)=\tau(x) f(I)$.

3. Local τ-centralizer

In this section, we suppose that \mathcal{R} is a commutative ring with identity, \mathcal{A} is an algebra with identity over \mathcal{R}, and τ is an endomorphism of \mathcal{A}.

Proposition 3.1. Suppose $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping and $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is an endomorphism such that for any $e=e^{2} \in \mathcal{A}, \varphi(e) \in \mathcal{A} \tau(e)$ (respectively, $\varphi(e) \in \tau(e) \mathcal{A})$. Then $\varphi(a)=\varphi(I) \tau(a)$ (respectively, $\varphi(a)=\tau(a) \varphi(I))$ for any a in the linear span of all idempotents in \mathcal{A}.

Proof. Suppose that $e=e^{2} \in \mathcal{A}$. Since $I-e=(I-e)^{2} \in \mathcal{A}$, it follows that there are c, d in \mathcal{A} such that $\varphi(e)=c \tau(e)$ and $\varphi(I-e)=d \tau(I-e)$. Hence $\varphi(I)=\varphi(e)+\varphi(I-e)=c \tau(e)+d \tau(I-e)$. Multiplying by $\tau(e)$, we have that $\varphi(I) \tau(e)=c \tau(e) \tau(e)+d \tau(I-e) \tau(e)=c \tau\left(e^{2}\right)+d \tau((I-e) e)=c \tau(e)=\varphi(e)$. Thus $\varphi(a)=\varphi(I) \tau(a)$ for any a in $\operatorname{span}\left\{e \in \mathcal{A}, e=e^{2}\right\}$.

The proof of the other case is similar.
Proposition 3.2. Suppose that $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping and $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is an endomorphism such that for any $e=e^{2} \in \mathcal{A}, \varphi(\mathcal{A} e) \subseteq \mathcal{A} \tau(e)$ (respectively, $\varphi(e \mathcal{A}) \subseteq \tau(e) \mathcal{A})$. Then $\varphi(a)=\varphi(I) \tau(a)($ respectively, $\varphi(a)=\tau(a) \varphi(I))$ for any a in the algebra generated by all idempotents in \mathcal{A}.

Proof. We first show that for any idempotents e_{1}, \ldots, e_{n} in \mathcal{A},

$$
\begin{equation*}
\varphi\left(e_{1} \cdots e_{n}\right)=\varphi(I) \tau\left(e_{1} \cdots e_{n}\right) \tag{8}
\end{equation*}
$$

If $n=1$, by Proposition 3.1, $\varphi\left(e_{1}\right)=\varphi(I) \tau\left(e_{1}\right)$.
Suppose that if $n=k$, (8) is true. For $n=k+1$, by assumption, there are c, d in \mathcal{A} such that

$$
\varphi\left(e_{1} \cdots e_{k} e_{k+1}\right)=c \tau\left(e_{k+1}\right), \varphi\left(e_{1} \cdots e_{k}\left(I-e_{k+1}\right)\right)=d \tau\left(I-e_{k+1}\right)
$$

Hence

$$
\varphi\left(e_{1} \cdots e_{k}\right)=c \tau\left(e_{k+1}\right)+d \tau\left(I-e_{k+1}\right)
$$

Multiplying by $\tau\left(e_{k+1}\right)$, we have that

$$
\varphi\left(e_{1} \cdots e_{k}\right) \tau\left(e_{k+1}\right)=c \tau\left(e_{k+1}\right)=\varphi\left(e_{1} \cdots e_{k+1}\right)
$$

and therefore

$$
\varphi\left(e_{1} \cdots e_{k+1}\right)=\varphi\left(e_{1} \cdots e_{k}\right) \tau\left(e_{k+1}\right)=\varphi(I) \tau\left(e_{1} \cdots e_{k}\right) \tau\left(e_{k+1}\right)=\varphi(I) \tau\left(e_{1} \cdots e_{k+1}\right)
$$

Thus $\varphi(a)=\varphi(I) \tau(a)$ for any a in the algebra generated by all idempotents in \mathcal{A}.

We call a left (right) ideal \mathcal{T} of \mathcal{A} a separating left (right) set, if for any a in $\mathcal{A}, a \mathcal{T}=\{0\}(\mathcal{T} a=\{0\})$ implies $a=0$. If \mathcal{T} is both a separating left set a separating right set then we call it a separating set.
Proposition 3.3. Suppose \mathcal{A} has a left (right) ideal \mathcal{T} that is contained in the algebra generated by all idempotents in \mathcal{A}. If $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping and $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is an endomorphism of \mathcal{A} such that $\tau(\mathcal{T})$ is a separating left (right) set of \mathcal{A} and $\varphi(\mathcal{A} e) \subseteq \mathcal{A} \tau(e)$ (respectively, $\varphi(e \mathcal{A}) \subseteq \tau(e) \mathcal{A})$ for any $e=e^{2} \in \mathcal{A}$. Then $\varphi(a)=\varphi(I) \tau(a)$ (respectively, $\varphi(a)=\bar{\tau}(a) \varphi(I)$) for any $a \in \mathcal{A}$.

Proof. We only prove the case that \mathcal{T} is a left ideal and $\tau(\mathcal{T})$ is a separating left set of \mathcal{A}, the other case is similar.

We first show that for any idempotents $e_{1} \cdots e_{n}$ in \mathcal{A}, a in \mathcal{A},

$$
\begin{equation*}
\varphi(a) \tau\left(e_{1} \cdots e_{n}\right)=\varphi\left(a e_{1} \cdots e_{n}\right) \tag{9}
\end{equation*}
$$

If $n=1$, since $\varphi\left(\mathcal{A} e_{1}\right) \subseteq \mathcal{A} \tau\left(e_{1}\right), \varphi\left(\mathcal{A}\left(I-e_{1}\right)\right) \subseteq \mathcal{A} \tau\left(I-e_{1}\right)$, we know that there are c_{1} and d_{1} in \mathcal{A} such that $\varphi\left(a e_{1}\right)=c_{1} \tau\left(e_{1}\right), \varphi\left(a\left(I-e_{1}\right)\right)=d_{1} \tau\left(I-e_{1}\right)$. So

$$
\varphi(a)=\varphi\left(a e_{1}\right)+\varphi\left(a\left(I-e_{1}\right)\right)=c_{1} \tau\left(e_{1}\right)+d_{1} \tau\left(I-e_{1}\right)
$$

Thus $\varphi(a) \tau\left(e_{1}\right)=c_{1} \tau\left(e_{1}\right)=\varphi\left(a e_{1}\right)$.
Suppose that if $n=k,(9)$ is true. For $n=k+1$, by assumption, there are c_{k+1}, d_{k+1} in \mathcal{A} such that

$$
\varphi\left(a e_{1} \cdots e_{k} e_{k+1}\right)=c_{k+1} \tau\left(e_{k+1}\right), \varphi\left(a e_{1} \cdots e_{k}\left(I-e_{k+1}\right)\right)=d_{k+1} \tau\left(e_{k+1}\right)
$$

and therefore

$$
\begin{aligned}
\varphi\left(a e_{1} \cdots e_{k}\right) & =\varphi\left(a e_{1} \cdots e_{k} e_{k+1}\right)+\varphi\left(a e_{1} \cdots e_{k}\left(I-e_{k+1}\right)\right) \\
& =c_{k+1} \tau\left(e_{k+1}\right)+d_{k+1} \tau\left(I-e_{k+1}\right)
\end{aligned}
$$

It follows that

$$
\varphi\left(a e_{1} \cdots e_{k}\right) \tau\left(e_{k+1}\right)=c_{k+1} \tau\left(e_{k+1}\right)=\varphi\left(a e_{1} \cdots e_{k+1}\right)
$$

Thus

$$
\varphi\left(a e_{1} \cdots e_{k+1}\right)=\varphi\left(a e_{1} \cdots e_{k}\right) \tau\left(e_{k+1}\right)=\varphi(a) \tau\left(e_{1} \cdots e_{k+1}\right)
$$

Hence $\varphi(a t)=\varphi(a) \tau(t)$, where t in the algebra generated by idempotents in \mathcal{A}. In particular, $\varphi(a t)=\varphi(a) \tau(t)$ for any a in \mathcal{A}, t in \mathcal{T}. Since \mathcal{T} is a left ideal, it follows that

$$
\varphi(a t)=\varphi(I) \tau(a t)=\varphi(I) \tau(a) \tau(t)
$$

Thus $(\varphi(a)-\varphi(I) \tau(a)) \tau(t)=0$. Since $\tau(\mathcal{T})$ is a separating left set, it follows that $\varphi(a)=\varphi(I) \tau(a)$ for any $a \in \mathcal{A}$.

Corollary 3.4. Suppose that \mathcal{A} has a separating left (right) set \mathcal{T} that is contained in the algebra generated by all idempotents in \mathcal{A}. If $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping and $\tau: \mathcal{A} \rightarrow \mathcal{A}$ is an automorphism such that for any $e=$ $e^{2} \in \mathcal{A}, \varphi(\mathcal{A} e) \subseteq \mathcal{A} \tau(e)($ respectively, $\varphi(e \mathcal{A}) \subseteq \tau(e) \mathcal{A})$, then $\varphi(a)=\varphi(I) \tau(a)$ (respectively, $\varphi(a)=\tau(a) \varphi(I))$ for any $a \in \mathcal{A}$.

Corollary 3.5. Suppose that a subspace lattice \mathcal{L} satisfies one of the following conditions:
(1) \mathcal{L} is a \mathcal{J}-subspace lattice on a Banach space X,
(2) \mathcal{L} is CDCSL on a separable Hilbert space H,
(3) \mathcal{L} satisfies $0_{+} \neq\{0\}, X_{-} \neq X$,
and τ is an automorphism of $\operatorname{alg} \mathcal{L}$.
If $\varphi: \operatorname{alg} \mathcal{L} \rightarrow \operatorname{alg} \mathcal{L}$ is a local τ-centralizer, then φ is a τ-centralizer.
Proof. Case 1. \mathcal{L} satisfies Condition (1). Let $\mathcal{I}=\operatorname{span}\{T: T \in \operatorname{alg} \mathcal{L}, \operatorname{rank} T=$ $1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg} \mathcal{L}$. By [3, Lemma 2.10], \mathcal{I} is contained in the linear span of the idempotents in $\operatorname{alg} \mathcal{L}$. By [3, Lemma 2.11], \mathcal{I} is a separating set of $\operatorname{alg} \mathcal{L}$.

Case 2. \mathcal{L} satisfies Condition (2). Let $\mathcal{I}=\operatorname{span}\{T: T \in \operatorname{alg} \mathcal{L}, \operatorname{rank} T=1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg} \mathcal{L}$. By [3, Lemma 2.3], \mathcal{I} is contained in the linear span of the idempotents in $\operatorname{alg} \mathcal{L}$. It follows from [5, Theorem 3] that \mathcal{I} is a separating set of alg \mathcal{L}.

Case 3. \mathcal{L} satisfies Condition (3). Let $\mathcal{I}=\operatorname{span}\left\{x \otimes f_{0}, x_{0} \otimes f: x \in X, f_{0} \in\right.$ $\left.\left(X_{-}\right)^{\perp}, x_{0} \in 0_{+}, f \in X^{*}\right\}$. Then \mathcal{I} is an ideal of $\operatorname{alg} \mathcal{L}$ and \mathcal{I} is a separating set of $\operatorname{alg} \mathcal{L}$. For any $x \in X, 0 \neq f_{0} \in\left(X_{-}\right)^{\perp}$, then $x \otimes f_{0} \in \operatorname{alg} \mathcal{L}$. If $f_{0}(x) \neq 0$, then $\frac{1}{f_{0}(x)} x \otimes f_{0}$ is an idempotent in \mathcal{I}. If $f_{0}(x)=0$, choose $x_{1} \in X$ such that $f_{0}\left(x_{1}\right)=1$, we have that $x \otimes f_{0}=\frac{1}{2}\left(x_{1}+x\right) \otimes f_{0}-\frac{1}{2}\left(x_{1}-x\right) \otimes f_{0}$, both $\left(x_{1}+x\right) \otimes f_{0}$ and $\left(x_{1}-x\right) \otimes f_{0}$ are idempotents. The case of $x_{0} \otimes f$ is similarly. Thus \mathcal{I} is contained in the algebra generated by the idempotents in $\operatorname{alg} \mathcal{L}$.

Thus, by Cases 1,2 and 3 , if \mathcal{L} satisfies one of above conditions, $\operatorname{alg} \mathcal{L}$ has an ideal \mathcal{I} which is contained in a subalgebra of alg \mathcal{L} generated by its idempotents and \mathcal{I} separates $\operatorname{alg} \mathcal{L}$.

Since φ is a local τ-centralizer, we have that for each x in $\operatorname{alg} \mathcal{L}$, there is a τ-centralizer φ_{x} such that $\varphi(x)=\varphi_{x}(x)$. It follows that for any $e=e^{2} \in$ $\operatorname{alg} \mathcal{L}, a \in \operatorname{alg} \mathcal{L}$,

$$
\varphi(a e)=\varphi_{a e}(a e)=\varphi_{a e}(a) \tau(e) \in(\operatorname{alg} \mathcal{L}) \tau(e)
$$

By Corollary 3.4, $\varphi(a)=\varphi(I) \tau(a)$ for any $a \in \operatorname{alg} \mathcal{L}$. Thus φ is a left τ centralizer. Similarly, φ is also a right τ-centralizer. Hence φ is a τ-centralizer.

4. Generalized derivations associate with Hochschild 2-cocycles

In this section, we suppose that \mathcal{A} is a unital algebra and \mathcal{M} is a unital \mathcal{A}-bimodule.

Motivated by Nakajima [7], we introduce a new type of local generalized derivation. A map (δ, α) is called a local generalized derivation if for any $x \in \mathcal{A}$, there is a generalized derivation $\left(\delta_{x}, \alpha\right)$ such that $\delta(x)=\delta_{x}(x)$. If $\alpha=0$, then δ is a local derivation.

Lemma 4.1. Let δ be a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ be a Hochschild 2-cocycle bilinear mapping. Then the following relations are equivalent
(i) $P^{\perp} \delta(P A Q) Q^{\perp}=P^{\perp} \alpha(P A, Q) Q^{\perp}$,
(ii) $\delta(P A Q)=\delta(P A) Q+P \delta(A Q)-P \delta(A) Q+\alpha(P A, Q)-P \alpha(A, Q)$, where $P=P^{2}, Q=Q^{2}, A \in \mathcal{A}$.
Proof. It is obvious that (ii) implies (i).
Suppose that (i) is true. Let $h(x, y)=\delta(x y)-\alpha(x, y)$. Then

$$
P^{\perp} h(P A, Q) Q^{\perp}=0
$$

$P h(A, Q) Q^{\perp}=P h(P A, Q) Q^{\perp}=\left(I-P^{\perp}\right) h(P A, Q) Q^{\perp}=h(P A, Q) Q^{\perp}$.
Therefore, we have that

$$
\begin{aligned}
h(P A, Q)-\operatorname{Ph}(A, Q) & =(h(P A, Q)-\operatorname{Ph}(A, Q)) Q \\
& =h(P A, I) Q-h\left(P A, Q^{\perp}\right) Q-\operatorname{Ph}(A, Q) Q \\
& =h(P A, I) Q-\operatorname{Ph}\left(A, Q^{\perp}\right) Q-\operatorname{Ph}(A, Q) Q \\
& =h(P A, I) Q-\operatorname{Ph}(A, I) Q
\end{aligned}
$$

Then

$$
\begin{aligned}
& \delta(P A Q)-\alpha(P A, Q)-P \delta(A Q)+P \alpha(A, Q) \\
= & \delta(P A) Q-\alpha(P A, I) Q-P \delta(A) Q+P \alpha(A, I) Q
\end{aligned}
$$

Thus

$$
\begin{aligned}
\delta(P A Q)= & P \delta(A Q)+\delta(P A) Q-P \delta(A) Q+\alpha(P A, Q)-P \alpha(A, Q) \\
& -\alpha(P A, I) Q+P \alpha(A, I) Q
\end{aligned}
$$

Since α is Hochschild 2-cocycle, we have that

$$
P \alpha(A, I)-\alpha(P A, I)+\alpha(P, A)-\alpha(P, A)=0
$$

Hence

$$
\delta(P A Q)=P \delta(A Q)+\delta(P A) Q-P \delta(A) Q+\alpha(P A, Q)-P \alpha(A, Q)
$$

Let δ be a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ be a Hochschild 2-cocycle bilinear mapping. We say that (δ, α) satisfies the condition (*) if

$$
\delta(P A Q)=P \delta(A Q)+\delta(P A) Q-P \delta(A) Q+\alpha(P A, Q)-P \alpha(A, Q)
$$

and $\delta(I)=-\alpha(I, I)$ hold for each $A \in \mathcal{A}$ and any idempotents P, Q in \mathcal{A}.

Lemma 4.2. Suppose that δ is a linear mapping from \mathcal{A} into \mathcal{M} and α : $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying the condition (*). Then

$$
\begin{align*}
\delta\left(P_{1} \cdots P_{n} A Q_{1} \cdots Q_{m}\right)= & \delta\left(P_{1} \cdots P_{n} A\right) Q_{1} \cdots Q_{m}+P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{m}\right) \\
& -P_{1} \cdots P_{n} \delta(A) Q_{1} \cdots Q_{m}+\alpha\left(P_{1} \cdots P_{n} A, Q_{1} \cdots Q_{m}\right) \\
& -P_{1} \cdots P_{n} \alpha\left(A, Q_{1} \cdots Q_{m}\right) \tag{10}
\end{align*}
$$

$$
, \ldots, P_{n}, Q_{1}, \ldots, Q_{m} \text { in } \mathcal{A} \text { and any } A \text { in } \mathcal{A} .
$$

Proof. We first show that for any positive integer n,

$$
\begin{align*}
\delta\left(P_{1} \cdots P_{n} A Q\right)= & \delta\left(P_{1} \cdots P_{n} A\right) Q+P_{1} \cdots P_{n} \delta(A Q)-P_{1} \cdots P_{n} \delta(A) Q \\
& +\alpha\left(P_{1} \cdots P_{n} A, Q\right)-P_{1} \cdots P_{n} \alpha(A, Q) . \tag{11}
\end{align*}
$$

If $n=1$, by the condition $(*),(11)$ is obvious.
Suppose that if $n=k,(11)$ is true. For $n=k+1$, by the condition $(*)$, it follows

$$
\begin{aligned}
& \delta\left(P_{1} \cdots P_{k+1} A Q\right) \\
= & \delta\left(P_{1} \cdots P_{k+1} A\right) Q+P_{1} \delta\left(P_{2} \cdots P_{k+1} A Q\right)-P_{1} \delta\left(P_{2} \cdots P_{k+1} A\right) Q \\
& +\alpha\left(P_{1} \cdots P_{k+1} A, Q\right)-P_{1} \alpha\left(P_{2} \cdots P_{k+1} A, Q\right) \\
= & \delta\left(P_{1} \cdots P_{k+1} A\right) Q+P_{1}\left(P_{2} \cdots P_{k+1} \delta(A Q)-P_{2} \cdots P_{k+1} \delta(A) Q\right. \\
& \left.-P_{2} \cdots P_{k+1} \alpha(A, Q)\right)+\alpha\left(P_{1} \cdots P_{k+1} A, Q\right) \\
= & \delta\left(P_{1} \cdots P_{k+1} A\right) Q+P_{1} \cdots P_{k+1} \delta(A Q)-P_{1} \cdots P_{k+1} \delta(A) Q \\
& -P_{1} \cdots P_{k+1} \alpha(A, Q)+\alpha\left(P_{1} \cdots P_{k+1} A, Q\right) .
\end{aligned}
$$

Now we show that (10) is true.
If $m=1$, by (11), we have that (10) is true.
Suppose that if $m=k,(10)$ is true. For $m=k+1$, by the condition $(*)$ and (11), we have

$$
\begin{aligned}
& \delta\left(P_{1} \cdots P_{n} A Q_{1} \cdots Q_{k+1}\right) \\
= & \delta\left(P_{1} \cdots P_{n} A Q_{1} \cdots Q_{k}\right) Q_{k+1}+P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{k}\right) Q_{k+1}+\alpha\left(P_{1} \cdots P_{n} A Q_{1} \cdots Q_{k}, Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \alpha\left(A Q_{1} \cdots Q_{k}, Q_{k}+1\right) \\
= & \delta\left(P_{1} \cdots P_{n} A\right) Q_{1} \cdots Q_{k+1}+P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \delta(A) Q_{1} \cdots Q_{k+1}+\alpha\left(P_{1} \cdots P_{n} A, Q_{1} \cdots Q_{k}\right) Q_{k+1} \\
& +\alpha\left(P_{1} \cdots P_{n} A Q_{1} \cdots Q_{k}, Q_{k+1}\right)-P_{1} \cdots P_{n}\left(\alpha\left(A Q_{1} \cdots Q_{k}, Q_{k+1}\right)\right. \\
& \left.+\alpha\left(A, Q_{1} \cdots Q_{k}\right) Q_{k+1}\right) \\
= & \delta\left(P_{1} \cdots P_{n} A\right) Q_{1} \cdots Q_{k+1}+P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \delta(A) Q_{1} \cdots Q_{k+1}+P_{1} \cdots P_{n} A \alpha\left(Q_{1} \cdots Q_{k}, Q_{k+1}\right) \\
& +\alpha\left(P_{1} \cdots P_{n} A, Q_{1} \cdots Q_{k+1}\right)-P_{1} \cdots P_{n}\left(A \alpha\left(Q_{1} \cdots Q_{k}, Q_{k+1}\right)\right. \\
& \left.+\alpha\left(A, Q_{1} \cdots Q_{k+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \delta\left(P_{1} \cdots P_{n} A\right) Q_{1} \cdots Q_{k+1}+P_{1} \cdots P_{n} \delta\left(A Q_{1} \cdots Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \delta(A) Q_{1} \cdots Q_{k+1}+\alpha\left(P_{1} \cdots P_{n} A, Q_{1} \cdots Q_{k+1}\right) \\
& -P_{1} \cdots P_{n} \alpha\left(A, Q_{1} \cdots Q_{k+1}\right) .
\end{aligned}
$$

Let \mathcal{I} be an ideal of \mathcal{A}. We say that \mathcal{I} is a separating set of \mathcal{M} if for any $m, n \in \mathcal{M}, m \mathcal{I}=\{0\}$ implies $m=0$ and $\mathcal{I} n=\{0\}$ implies $n=0$.
Theorem 4.3. Let \mathcal{I} be a separating set of \mathcal{M}. Suppose that \mathcal{I} is contained in the algebra generated by the idempotents in \mathcal{A}. If δ is a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying the condition $(*)$, then (δ, α) is a generalized derivation.
Proof. Since \mathcal{I} is contained in the algebra generated by the idempotents in \mathcal{A}, by Lemma 4.2 , for any S and T in \mathcal{I},

$$
\begin{aligned}
\delta(S T) & =\delta(S) T+S \delta(T)-S \delta(I) T+\alpha(S, T)-S \alpha(I, T) \\
& =\delta(S) T+S \delta(T)+\alpha(S, T)+S \alpha(I, I) T-S \alpha(I, T) \\
& =\delta(S) T+S \delta(T)+\alpha(S, T)
\end{aligned}
$$

Let A belongs to \mathcal{A}. Since \mathcal{I} is an ideal of \mathcal{A}, it follows that

$$
\delta(S A T)=\delta(S A) T+S A \delta(T)+\alpha(S A, T)
$$

By Lemma 4.2, we have that

$$
\delta(S A T)=\delta(S A) T+S \delta(A T)-S \delta(A) T+\alpha(S A, T)-S \alpha(A, T)
$$

Thus

$$
\begin{equation*}
S \delta(A T)=S A \delta(T)+S \delta(A) T+S \alpha(A, T) \tag{12}
\end{equation*}
$$

Since \mathcal{I} is a separating set of \mathcal{M}, by (12), it follows that

$$
\begin{equation*}
\delta(A T)=A \delta(T)+\delta(A) T+\alpha(A, T) \tag{13}
\end{equation*}
$$

For any $A, B \in \mathcal{A}, T \in \mathcal{I}$, by (13),

$$
\begin{aligned}
\delta(B A T) & =B A \delta(T)+\delta(B A) T+\alpha(B A, T) \\
\delta(B A T) & =B \delta(A T)+\delta(B) A T+\alpha(B, A T) \\
& =B \delta(A) T+B A \delta(T)+B \alpha(A, T)+\delta(B) A T+\alpha(B, A T)
\end{aligned}
$$

Therefore, we have that

$$
\begin{aligned}
\delta(B A) T & =B \delta(A) T+\delta(B) A T+B \alpha(A, T)-\alpha(B A, T)+\alpha(B, A T) \\
& =B \delta(A) T+\delta(B) A T+\alpha(B, A) T
\end{aligned}
$$

Since \mathcal{I} is a separating set of \mathcal{M}, it follows that $\delta(B A)=B \delta(A)+\delta(B) A+$ $\alpha(B, A)$.

Corollary 4.4. Let \mathcal{I} be a separating set of \mathcal{M}. Suppose that \mathcal{I} is contained in the algebra generated by idempotents in \mathcal{A}. If (δ, α) is a local generalized derivation from \mathcal{A} into \mathcal{M}, then (δ, α) is a generalized derivation.

Proof. Since (δ, α) is a local generalized derivation, we have that

$$
\begin{aligned}
P^{\perp} \delta(P A Q) Q^{\perp} & =P^{\perp} \delta_{P A Q}(P A Q) Q^{\perp} \\
& =P^{\perp}\left(\delta_{P A Q}(P A) Q+P A \delta_{P A Q}(Q)+\alpha(P A, Q)\right) Q^{\perp} \\
& =P^{\perp} \alpha(P A, Q) Q^{\perp}
\end{aligned}
$$

for each $A \in \mathcal{A}$ and any idempotents P, Q in \mathcal{A}. And

$$
\delta(I)=\delta_{I}(I) I+I \delta_{I}(I)+\alpha(I, I)=2 \delta(I)+\alpha(I, I)
$$

Thus $\delta(I)=-\alpha(I, I)$. By Lemma 4.1, δ satisfies the condition $(*)$. By Theorem 4.3, (δ, α) is a generalized derivation.

Let \mathcal{A} be an ultraweakly closed subalgebra of $B(H)$. The Banach space \mathcal{M} is said to be a dual normal Banach \mathcal{A}-bimodule if \mathcal{M} is a Banach \mathcal{A}-bimodule, \mathcal{M} is a dual space, and for any $m \in \mathcal{M}$, the maps $\mathcal{A} \ni a \rightarrow a m$ and $\mathcal{A} \ni a \rightarrow m a$ are ultraweak to weak* continuous.

Corollary 4.5. Let \mathcal{L} be a CDCSL on a complex separable Hilbert space H. If δ is a linear mapping from $\operatorname{alg} \mathcal{L}$ into a dual normal unital Banach alg \mathcal{L} bimodule \mathcal{M} and $\alpha: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying condition $(*)$, then (δ, α) is a generalized derivation.

Proof. Let $\mathcal{I}=\operatorname{span}\{T: T \in \operatorname{alg} \mathcal{L}, \operatorname{rank} T=1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg} \mathcal{L}$. By [3, Lemma 2.3], \mathcal{I} is contained in the linear span of the idempotents in alg \mathcal{L}. By [5, Theorem 3], \mathcal{I} is a separating set of \mathcal{M}. By Theorem 4.3, (δ, α) is a generalized derivation.

Corollary 4.6. Let \mathcal{L} be a $C D C S L$ on a complex separable Hilbert space H. If (δ, α) is a local generalized derivation from alg \mathcal{L} into a dual normal unital Banach alg \mathcal{L}-bimodule \mathcal{M}, then (δ, α) is a generalized derivation.

Acknowledgements. The author would like to thank Professor Jiankui Li for his encouragement and help. And this paper is supported by the National Science Foundation of China.

References

[1] E. Albaş, On τ-centralizers of semiprime rings, Sibirsk. Mat. Zh. 48 (2007), no. 2, 243250; translation in Siberian Math. J. 48 (2007), no. 2, 191-196.
[2] The Hadwin Lunch Bunch, Local multiplications on algebras spanned by idempotents, Linear and Multilinear Algebra 37 (1994), no. 4, 259-263.
[3] D. Hadwin and J. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), no. 2, 702-714.
[4] P. Halmos, A Hilbert Space Problem Book, Springer-Verlag, 1974.
[5] C. Laurie and W. Longstaff, A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc. 89 (1983), no. 2, 293-297.
[6] J. Li, Commutants and double commutants of reflexive algebras, Kyushu J. Math. 50 (1996), no. 1, 171-178.
[7] A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turkish J. Math. 30 (2006), no. 4, 403-411.
[8] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 609-614.

Department of Mathematics
East China University of Science and Technology
Shanghai 200237, P. R. China
E-mail address: zhoujiren1983@163.com

[^0]: Received July 29, 2008; Revised October 24, 2008.
 2000 Mathematics Subject Classification. 47B47, 47L35.
 Key words and phrases. Jordan τ-centralizer, local τ-centralizer, local generalized derivation, Hochschild 2-cocycle.

