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7-CENTRALIZERS AND GENERALIZED DERIVATIONS

JIREN ZHOU

ABSTRACT. In this paper, we show that Jordan 7-centralizers and local
T-centralizers are T-centralizers under certain conditions. We also dis-
cuss a new type of generalized derivations associated with Hochschild
2-cocycles and introduce a special local generalized derivation associated
with Hochschild 2-cocycles. We prove that if £ is a CDCSL and M is a
dual normal unital Banach algf-bimodule, then every local generalized
derivation of above type from algl into M is a generalized derivation.

1. Introduction

Let A be an algebra with identity and let 7 be an endomorphism of A.

A linear mapping f : A — A is called a left (right) centralizer of Aif f(y) =
fMy (fly) =yf(1)) for any y € A. If f is a left and right centralizer, then it
is to call f a centralizer. A linear mapping f : A — A is called a left (right)
Jordan centralizer of A if f(2%) = f(x)z (f(2?) = zf(x)) for any z € A. f is
called a Jordan centralizer of Aif f(zy+yx) = f(x)y+yf(z) = fly)z+xf(y)
for any z,y € A. In [8], Zalar shows that a left Jordan centralizer of a semiprime
ring is a left centralizer and each Jordan centralizer of a semiprime ring is a
centralizer.

A linear mapping f : A — A is called a left (right) T-centralizer of A if
fl) = f(OHr(y) (fly) = 7(y)f(1)) for any xz,y € A. If f is a left and right
T-centralizer, then it is to call f a 7-centralizer. A linear mapping f: A — A
is called a left (right) Jordan T-centralizer of A if f(z?) = f(x)7(z) (f(2?) =
7(z)f(x)) for any = € A. f is called a Jordan T-centralizer of A if

flay +yx) = f@)r(y) + 7() f(x) = fy)r() + 7(2) f ()
for any z,y € A. Albag [1] shows that under some conditions, a left Jordan
T-centralizer of a semiprime ring is a left 7-centralizer and each Jordan 7-
centralizer of a semiprime ring is a 7-centralizer.
We call f a local left centralizer of A if for each x € A, there is a left
centralizer f, of A such that f(z) = f,(z). Similarly, we can define local right
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centralizer and local centralizer. In [2], Hadwin studies local centralizers on von
Neumann algebras and nest algebras.

Recently, Nakajima introduced the following definitions. Let A be an algebra
and M be an A-bimodule. Let o : A x A — M be a bilinear mapping. « is
called a Hochschild 2-cocycle if

(1) xa(ya Z) - Oé((ﬂy’ Z) + a(:c,yz) - CM(:L’,y)Z =0.

A linear mapping § : A — M is called a generalized derivation if there is a
2-cocycle o such that

(2) §(zy) = d(x)y + 20 (y) + a(z, y).

We denote it by (d,«). In [7], Nakajima shows that the usual generalized
derivation, left centralizer and (o, 7)-derivation are also generalized derivations
in above sense.

The distribution of this paper is as follows.

In Section 2, we prove that if A’N A = CI, and 7 is an epimorphism of A,
then each Jordan t-centralizer of A is 7-centralizer. And we also show that
if £ is a CDCSL on H and 7 is an automorphism of algl, then each Jordan
T-centralizer of algl is T-centralizer.

We introduce the following definition. We call f a local left T-centralizer of
A if for each z € A, there is a left T-centralizer f, of A such that f(x) = f.(z).
Similarly, we can define local right T-centralizer and local T-centralizer. In
Section 3, we generalize some results of [2] to local T-centralizer. And we show
that if £ is a CDCSL on H and 7 is an automorphism of algL, then each local
T-centralizer of algl is a T-centralizer.

In Section 4, we introduce a new type of local generalized derivations and we
show that every local generalized derivation of above type from CDCSL into
its dual normal unital Banach A-bimodule is a generalized derivation.

The following notations will be used in our paper.

Let X be a complex Banach space with dual X* and let B(X) be the set
of all bounded linear maps from X into itself. Let H be a complex separable
Hilbert space.

A subspace lattice on X is a collection £ of subspaces of X with (0), X in
L and such that for every family {M,} of elements of £, both AM,. and VM,
belong to L, where AM, denotes the intersection of {M,} and VM, denotes
the closed linear span of {M,.}. A totally ordered subspace lattice is called a
nest. For a subspace lattice £, we define algl by

algl = {T € B(H): TN C N, VN € L}.

Forany LC X, Lt ={fe X*, f(x)=0forallz € L}. Let v € X, f € X*
be nonzero. The rank one operator x @ f is defined by z — f(z)z for any
z € X. For any nonzero x,y € H, the operator x ® y is defined by z — (z,y)x
for any z € H. If L is a subspace lattice of X and E € L, we define

E.=V{FeL,FpE}and E, =N{F € L,F ¢ E}.
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It is well known that x ® f € algL if and only if there is ¥ € £ such that z € F
and f € (E_)* (equivalently, » € Ey and f € E+).

A subspace lattice L is said to be completely distributive if for every family
{Xij}ier jes of elements in £,

AV zii=\ Azigoyand \/ Naig= N Vg0,

i€l jeJ fedriel i€l jeJ fedriel

where J; denotes the set of all maps from I into J.

A Hilbert space subspace lattice £ is called a commutative subspace lattice
(CSL) if it consists of mutually commuting projections. If £ is a commutative
subspace lattice, then algl is called a CSL algebra. If L is a completely dis-
tributive commutative subspace lattice (CDCSL), then algL is called a CDCSL
algebra.

Given a subspace lattice £ on X, put

Je={K e L:K#{0} and K_ # X}.

Call £ a J-subspace lattice on X if it satisfies the following conditions:
WOV{K :KeJ:} =X,
(2) MK_ : K e J:}={0}
(3) KVK_ =X for any K € Jr;
(4) KANK_ =0 for any K € Jr.
In this paper, we suppose that A is a unital algebra and M is a unital
A-bimodule.

2. Jordan T-centralizers

Since the proof of the following lemma is analogous to that of [1, Lemma 3],
we omit it.

Lemma 2.1. Let f be a left Jordan T-centralizer of an algebra A. Then
(1) flzy +yz) = f(2)7(y) + f(y)7(2) for all z,y € A,
(2) f(zyz) = f(x)T(y)7(2) for all x,y € A,
(3) flzyz + zyz) = f(2)7(y)7(2) + f(2)T(y)7(2) for all z,y € A,
(4) D(x,y) = —D(y, z), where D(x,y) = f(zy) — f(x)7(y) for all x,y € A.

Lemma 2.2. Fach left Jordan T-centralizer f of a unital algebra A is a left
T-centralizer.

Proof. Let I be the identity in 4. Since 7 is an endomorphism of A, it follows
that 7(I) = I. Let D(z,y) = f(zy) — f(z)7(y) for any z,y € A. So D(z,I) =
f(zI) = f(z)r(I) =0 for all z € A. By Lemma 2.1(4), we have that D(I,z) =
—D(z,I) =0 for all z € A. Thus

(3) f(z) = fz) = f(I)7(z)
for all x € A. O
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In what follows, we suppose that A is a unital subalgebra of B(X) such that
A'NA = CI, where I is the identity in A, and 7 is an epimorphism of A. And
we denote by Z = A’ N A = CI the center of A.

Lemma 2.3. Let a be a fized element in A. If ar(x)—7(z)a € Z for all x € A,
then a € Z.

Proof. Since at(z) — 7(x)a € CI, by [4, Question 182], it follows that at(z) —
7(z)a = 0. Since 7 is surjective, we have that a € Z. O

Lemma 2.4. Let a be a fized element in A, and f(z) = a7(z) +7(x)a for any
x € A. If f is a Jordan T-centralizer of A, then a € Z.

Proof. Since f is a Jordan 7-centralizer of A, it follows that f(zy + yx) =
f(@)7m(y) +7(y)f(x) for all z,y € A. Hence

at(zy +yx) + 7(zy +yr)a = (ar(z) + 7(2)a)7(y) + 7(y)(a7(2) + 7(z)a),
at(y)7(z) + 7(2)7(y)a T(x)ar(y) + 7(y)ar(2),
7(z)(ar(y) — 7(y)a) (a7(y) — T(y)a)7(z)

for all z,y € A. Since T is surjective, we have that at(y) — 7(y)a € Z. Hence
a € Z by Lemma 2.3. [l

Lemma 2.5. Fvery Jordan T-centralizer f of A maps Z into Z.

Proof. For any ¢ € Z, let a = f(c). Since f is a Jordan 7-centralizer of A, we
have that

2f(cx) = flex + xc) = f()r(2) + 7(2) f(c) = a7(x) + 7(x)a
for all x € A. Let g(x) = 2f(cx). Then

glry +yx) = 2f(c(rvy+yzx)) =2f(cry + ycx)
= 2(f(cx)m(y) + 7(y) f(cx)) = g(x)7(y) + 7(y)g(2),
)

glry +yr) = 2f(c(zy +yz)) = 2f(rcy + cyx
= 2(f(cy)r(2) + 7(2)f(cy)) = 9(y)7(2) + 7(2)9(y)

for any z,y € A. Thus, we have that g is a Jordan 7-centralizer of A. By
Lemma 2.4, we have a = f(c) € Z for all ¢ € Z. O

Theorem 2.6. Fach Jordan T-centralizer f of A is T-centralizer.
Proof. By Lemma 2.5, we have that

2f(x) = flal + Ix) = f(I)T(2) + 7(2) f(I) = 2f(I)7(2) = 27 () f(])
for all z € A. Thus

for all z € A. O

Corollary 2.7. Let L be a nest on X and let 7 be an epimorphism of algL.
Then each Jordan T-centralizer of algL is T-centralizer.
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Proof. Since L is a nest on X, we have that (algL)’ = CI. By Theorem 2.6,
we conclude the proof. (I

Definition 2.8. Let £ be a subspace lattice on X and L € £. L is said to be
a comparable element of L if forany M € L, LC M or L D M.

Lemma 2.9 ([6, Proposition 2.9]). Suppose that L is a subspace lattice on X
with a nontrivial comparable element M. If there is a subspace N of X such

that X = M @ N, then (algl)’ = CI.
By Theorem 2.6 and Lemma 2.9, we can show the following result.

Corollary 2.10. Let L be a subspace lattice on X with a nontrivial comparable
element M. If there is a subspace N of X such that X = M & N and 7 is a
surjective endomorphism of algl, then each Jordan T-centralizer of algL is a
T-centralizer.

Remark 2.11. Let £ = {(0), K, L, M, X} be a pentagonal lattice on X. Then
(algL)’ is trivial. Hence, by Theorem 2.6, we have that each Jordan 7-centralizer
of algL is T-centralizer.

In the following, we give a result of an algebra A such that the center of A

#CI.

Lemma 2.12. Suppose that L is a CDCSL on H and T is an automorphism
of algL. Then every Jordan T-centralizer f of algL maps I into the center Z.

Proof. Let e = €% € algl. Since T is an automorphism of algL, it follows that
P = 771(e) such that P = P? € algl. Since f is a Jordan -centralizer, it
follows that

(4) 2f(P) = f(PI+1P) = f(I)r(P)+7(P)f(I),
(5) 2f(P) = f(P?>+ P?) = f(P)7(P) + 7(P)f(P).
Thus

(6) T(P)f(P)T(P) = 7(P)f(I)T(P),
(7) [(P)r(P) =7(P)f(P)=7(P)f(P)r(P)

By (4), (5), (6), (7), we have that
fO7(P) =2f(P)r(P) — 7(P)f(I)T(P) = 7(P)f(P)7(P),
T(P)f(I) = 27(P)f(P) = 7(P)f(I)T(P) = 7(P)f(P)T(P).
It follows that f(I)7(P) = 7(P)f(I). Thus f(I)e = ef(I) for any e = €% €

algl. By [3, Lemma 2.3], for any 2 ® y € algl, z®y € span{e € algL, e = €}
We have that

—- =

fN(@ey) =(@y)f)
Let Rq(algL) be the algebra generated by all of rank one operators of algL.

By [5, Theorem 3],
Rl(alg[,)SOT =algl.
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It follows that f(I)T =T f(I) for any T in algL. So f(I) € Z. O

Theorem 2.13. If L is a CDCSL on H and T is an automorphism of algL,
then each Jordan T-centralizer of algL is T-centralizer.

Proof. Let f be a Jordan 7-centralizer of algl. We have that

2f(x) = fIx +zI) = f(I)7(x) + 7(x) f(]).
By Lemma 2.12, f(I) € Z, it follows that f(I)7(z) = 7(z)f(I). Thus f(x) =
fD7(z) = 7(2) f(I). U

3. Local 7-centralizer

In this section, we suppose that R is a commutative ring with identity, A is
an algebra with identity over R, and 7 is an endomorphism of A.

Proposition 3.1. Suppose p : A — A is a linear mapping and 7 : A — A is
an endomorphism such that for any e = ¢* € A, p(e) € Ar(e) (respectively,
p(e) € 7(e)A). Then p(a) = o(I)7(a) (respectively, p(a) = 7(a)p(I)) for any
a in the linear span of all idempotents in A.

Proof. Suppose that e = ¢? € A. Since I —e = (I —¢)? € A, it follows that
there are ¢,d in A such that ¢(e) = c7(e) and (I —e) = d7(I — e). Hence
o(I) = p(e)+ ¢l —e) = cr(e) + dr(I — e). Multiplying by 7(e), we have that
o(I)1(e) = cr(e)T(e) +dr(I — e)1(e) = c1(e?) + dr((I — e)e) = cr(e) = p(e).
Thus ¢(a) = ¢(I)7(a) for any a in span{e € A, e = €?}.

The proof of the other case is similar. O

Proposition 3.2. Suppose that ¢ : A — A is a linear mapping and 7 : A — A
is an endomorphism such that for any e = % € A, ¢(Ae) C At (e) (respectively,

p(eA) C 7(e)A). Then p(a) = p(I)T(a) (respectively, p(a) = T(a)p(I)) for
any a in the algebra generated by all idempotents in A.

Proof. We first show that for any idempotents ey, ..., e, in A,

(8) pleren) =@(I)T(e1---en).

If n = 1, by Proposition 3.1, p(e1) = o(I)7(e1).

Suppose that if n = k, (8) is true. For n = k + 1, by assumption, there are
¢, din A such that

pler---enerr1) = cr(ers1), wler---ex(l —epy1)) = dr(l — epy1)-
Hence
pler - ex) = cr(epr1) +dr(I — egpy1).
Multiplying by 7(eg+1), we have that
pler---ep)T(err1) = cT(enr1) = @(er - exy1),

and therefore

plerepy1)=w(er - -ex)T(ext1)=p()T(e1- - ex)T(er+1)=w(I)T(e1 - ext1)-
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Thus ¢(a) = p(I)7(a) for any a in the algebra generated by all idempotents in
A. O

We call a left (right) ideal 7 of A a separating left (right) set, if for any a
in A, aT = {0} (Ta = {0}) implies a = 0. If 7 is both a separating left set a
separating right set then we call it a separating set.

Proposition 3.3. Suppose A has a left (right) ideal T that is contained in the
algebra generated by all idempotents in A. If p : A — A is a linear mapping
and 7 : A — A is an endomorphism of A such that 7(T) is a separating left
(right) set of A and p(Ae) C At(e) (respectively, p(eA) C 7(e)A) for any
e=c? e A Then p(a) = o(I)t(a) (respectively, p(a) = T(a)p(I)) for any
ac A

Proof. We only prove the case that 7 is a left ideal and 7(7) is a separating
left set of A, the other case is similar.

We first show that for any idempotents e; --- e, in A, a in A,
(9) pla)T(er--en) = plaey -+ en).

If n =1, since ¢(Ae1) C At(e1), (A —e1)) C AT(I — e1), we know that
there are ¢; and d; in A such that p(aeq) = e17(e1), p(a(I—ey1)) = di7(I—eq).
So

p(a) = plaer) + p(a(l —e1)) = ex7(er) + di(I — e1).

Thus p(a)1(e1) = c17(e1) = p(aeq).

Suppose that if n =k, (9) is true. For n = k + 1, by assumption, there are
Ck+1,di+1 in A such that

p(aey - exepy1) = crr17(err1), plaer - ex(l —epy1)) = drr17(€rs1),
and therefore

plaer---e) = p(aer - epepi1) +laer el — ext1))
= cpr17(ert1) +di1m(l — egy1).

It follows that

p(aer -+ - ep)T(ext1) = crra7(ert1) = plaer - eppr).
Thus
plaer - exy1) = plaer - ex)T(ert1) = pla)T(e1 - - epqr).
Hence ¢(at) = p(a)7(t), where t in the algebra generated by idempotents in

A. In particular, ¢(at) = p(a)7(t) for any a in A, ¢t in 7. Since 7 is a left
ideal, it follows that

plat) = p(I)(at) = p(I)7(a)7(?).

Thus (¢(a) — o(I)7(a))7(t) = 0. Since 7(7) is a separating left set, it follows
that ¢(a) = ¢(I)7(a) for any a € A. O
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Corollary 3.4. Suppose that A has a separating left (right) set T that is
contained in the algebra generated by all idempotents in A. If o : A — A is
a linear mapping and 7 : A — A is an automorphism such that for any e =
e? € A, p(Ae) C Ar(e) (respectively, p(eA) C 7(e)A), then p(a) = o(I)T(a
(respectively, (a) = 7(a)e(I)) for any a € A.

Corollary 3.5. Suppose that a subspace lattice L satisfies one of the following
conditions:

(1) £ is a J-subspace lattice on a Banach space X,

(2) L is CDCSL on a separable Hilbert space H,

(3) L satisfies 04 # {0}, X_ # X,
and T is an automorphism of algL.

If ¢ :algl — algLl is a local T-centralizer, then ¢ is a T-centralizer.

Proof. Case 1. L satisfies Condition (1). Let Z = span{T : T € algLl,rank T =
1}. Then Z is an ideal of algL. By [3, Lemma 2.10], Z is contained in the linear
span of the idempotents in algl. By [3, Lemma 2.11], 7 is a separating set of
algL.

Case 2. L satisfies Condition (2). Let Z = span{T : T’ € algl,rank T = 1}.
Then 7 is an ideal of algl. By [3, Lemma 2.3], Z is contained in the linear
span of the idempotents in algl. It follows from [5, Theorem 3] that Z is a
separating set of algLl.

Case 3. L satisfies Condition (3). Let Z = span{z ® fy, 2o @ f:x € X, fo €
(X )t 20€04,f€ X*}. Then Z is an ideal of algL and Z is a separating set
of algl. For any z € X, 0 # fo € (X_)*, then 2 ® fy € algl. If fo(x) # 0,
then mx ® fo is an idempotent in Z. If fo(x) = 0, choose 21 € X such
that fo(z1) = 1, we have that 2 ® fo = (21 +2) ® fo — 2(z1 — 2) ® fo, both
(r14+2)® fop and (x1 —x) ® fy are idempotents. The case of x¢ ® f is similarly.
Thus 7 is contained in the algebra generated by the idempotents in algL.

Thus, by Cases 1, 2 and 3, if L satisfies one of above conditions, algL has an
ideal Z which is contained in a subalgebra of algL generated by its idempotents
and 7 separates algL.

Since ¢ is a local 7-centralizer, we have that for each x in algl, there is
a T-centralizer ¢, such that p(z) = @, (z). It follows that for any e = €2 €
algl, a € algl,

v(ae) = pae(ae) = pae(a)T(e) € (algl)T(e).

By Corollary 3.4, ¢(a) = ¢(I)7(a) for any a € algl. Thus ¢ is a left 7-
centralizer. Similarly, ¢ is also a right 7-centralizer. Hence ¢ is a T-centralizer.

O

4. Generalized derivations associate with Hochschild 2-cocycles

In this section, we suppose that A is a unital algebra and M is a unital
A-bimodule.
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Motivated by Nakajima [7], we introduce a new type of local generalized
derivation. A map (4, «) is called a local generalized derivation if for any x € A,
there is a generalized derivation (d,, «) such that d(z) = §,(x). If a = 0, then
0 is a local derivation.

Lemma 4.1. Let § be a linear mapping from A into M and av: A x A — M
be a Hochschild 2-cocycle bilinear mapping. Then the following relations are
equivalent

(i) PHo(PAQ)Q* = Pra(PA,Q)Q,

(ii) (PAQ) = §(PA)Q+ PS(AQ) — P6(A)Q +a(PA,Q) — Pa(A,Q), where
P=P2Q=Q*AcA.
Proof. Tt is obvious that (ii) implies (i).

Suppose that (i) is true. Let h(z,y) = d(zy) — a(x,y). Then

PEh(PA,Q)Q* =0,
Ph(A,Q)Q" = Ph(PA,Q)Q" = (I — PHh(PA,Q)Q" = h(PA,Q)Q™.

Therefore, we have that

WPA,Q) ~ Ph(A,Q) = (h(PA,Q)— Ph(4,Q))Q

= h(PA,I)Q — h(PA,Q")Q — Ph(4,Q)Q
W(PA,D)Q — Ph(A,Q1)Q — Ph(A,Q)Q

= W(PA,I)Q — Ph(A,1)Q.

Then
0(PAQ) — a(PA,Q) — PS(AQ) + Pa(A, Q)
= 0(PA)Q — a(PA,1)Q — PS(A)Q + Pa(A, Q.
Thus
0(PAQ) = PI(AQ)+6(PA)Q — Pé(A)Q + a(PA,Q) — Pa(A,Q)

—a(PA, I)Q + Pa(A,1)Q.
Since « is Hochschild 2-cocycle, we have that
Pa(A,I) — a(PA,I)+ o(P,A) —a(P,A) = 0.
Hence
0(PAQ) = P§(AQ) +5(PA)Q — P§(A)Q + a(PA,Q) — Pa(A, Q). O
Let § be a linear mapping from A into M and @ : A x A — M be a
Hochschild 2-cocycle bilinear mapping. We say that (d, «) satisfies the condition
(x) if
5(PAQ) = PS(AQ) + 8(PAIQ — PS(A)Q + a(PA,Q) — Pa(A, Q)
and 0(I) = —a(Z,I) hold for each A € A and any idempotents P, @ in A.
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Lemma 4.2. Suppose that § is a linear mapping from A into M and « :
Ax A — M is a Hochschild 2-cocycle bilinear mapping satisfying the condition
(). Then

5Py PaAQy++ Q) = 6(PL++ PaA)@ - Qs+ Pr - Pad(AQ1 -+ Qo)
(10) P Paa(A Qi Q)
for any idempotents Py, ..., P,,Q1,...,Qm m A and any A in A.

Proof. We first show that for any positive integer n,
o(P-+-P,AQ) = 0(P---P,AQ+ P ---P0(AQ) — P+ P,0(A)Q
(11) +a(P - P,AQ)— P+ Pa(A, Q).
If n = 1, by the condition (x), (11) is obvious.
Suppose that if n = k, (11) is true. For n = k + 1, by the condition (x), it
follows
§(Pr -+ Pri1AQ)
= 0P Pep1A)Q + Pio(Ps- - Pry1 AQ) — Pro(Py - - Py A)Q
+a(Pr - P A, Q) — Pra(Pe -+ Pry1 A, Q)
= 6P Py1A)Q+ Pi(Py- - Pry16(AQ) — Py - - - Pry10(A)Q
=Py Prpia(A, Q) + a(Pr- - P14, Q)
= O(Pr e Pt AQ+ Py Pesd(AQ) — Py Pusr8(A)Q
—P - Pra(A, Q)+ (P - - Pry1 A Q).
Now we show that (10) is true.
If m =1, by (11), we have that (10) is true.
Suppose that if m = k, (10) is true. For m = k + 1, by the condition (x)
and (11), we have
(P PAQr -+ Qry1)
= 0P PyAQ1 - Qr)Qry1 + Pr- - Po(AQ1 - Qi)
—Py-- Ppo(AQr -+ Qr)Qry1 + (Pr- - Py AQ: - Qk, Qi)
=P Pha(AQr - Qp, Qr + 1)
= 0P PA)Q1 Qrr1 + P Po(AQr -+ - Qpy)
—P1- - Ppo(A)Q1 - Qg1 + (P PA, Q1 - Qr) Qi1
+a(Py - PoAQr - Qs Q1) — Pr- - Pr(a(AQy -+ - Qp, Qry1)
+a(A, Q1 Qr)Qry1)
= 0P PA)Q1 Qry1 + P Po(AQr -+ - Qpya)
—Py--Ppo(A)Q1 - Qg1 + Pr- - PoAc(Qr - - - Qp, Qi)
Fa(Pr--- PpA, Q1 Qryr) — Pr--- Po(Aa(Q1 -+ Qk, Qrr1)
+a(A, Q1 Qry1))
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= (P PyA)Q1 - Qry1 + P Po(AQ1 - - Qrt1)
—P1 - Po(A)Q1 - Q1+ a(Pr--- PoA, Q1 Qi)
—Py- - Pra(A, Q1 Qry).

Let Z be an ideal of A. We say that Z is a separating set of M if for any

m,n € M, mZ = {0} implies m = 0 and Zn = {0} implies n = 0.

Theorem 4.3. Let T be a separating set of M. Suppose that L is contained in
the algebra generated by the idempotents in A. If § is a linear mapping from
A into M and o : A x A — M is a Hochschild 2-cocycle bilinear mapping

satisfying the condition (x), then (J,) is a generalized derivation.

Proof. Since 7 is contained in the algebra generated by the idempotents in A,

by Lemma 4.2, for any S and T in Z,
0(ST) = ST+ S6(T)— S6(I)T + «(S,T) — Sa(1,T)
= §(ST+SH(T)+ (S, T)+ Sa(I,)T — Sa(I,T)
0(S)T + S6(T) + (S, T).

Let A belongs to A. Since 7 is an ideal of A, it follows that

0(SAT) =0(SA)T + SANT) + a(SA,T).
By Lemma 4.2, we have that

0(SAT) = 6(SA)T + So(AT) — So(A)T + «(SA, T) — Sa(A,T).

Thus

(12) SO(AT) = SA(T) + SO(A)T + Sa(A,T).
Since 7 is a separating set of M, by (12), it follows that
(13) §(AT) = AS(T) + 6(A)T + (A, T).
For any A, B € A,T € Z, by (13),

0(BAT) = BAST)+6(BA)T + a(BA,T),

0(BAT) = BO(AT)+ 6(B)AT + (B, AT)

= BS(A)T + BAS(T) + Ba(A,T) + §(B)AT + (B, AT).

Therefore, we have that

§(BA)T

—  BS(A)T + 6(B)AT + (B, A)T.

BS(A)T + 6(B)AT + Ba(A,T) — a(BA,T) + a(B, AT)

Since 7 is a separating set of M, it follows that 6(BA) = BJ(A) + §(B)A +

a(B, A).

Corollary 4.4. Let T be a separating set of M. Suppose that T is contained
in the algebra generated by idempotents in A. If (6,a) is a local generalized

derivation from A into M, then (6, ) is a generalized derivation.
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Proof. Since (4, a) is a local generalized derivation, we have that
PL3(PAQ)QT = Popag(PAQ)QH
= P (0paq(PA)Q+ PASpaq(Q) + a(PA,Q))Q
— Pra(PA,Q)Q*
for each A € A and any idempotents P, @ in A. And
S(I) =0r(NI+I6:(I)+ (L, I)=26(1) + (I, I).

Thus 6(I) = —«(I,I). By Lemma 4.1, § satisfies the condition (x). By Theo-
rem 4.3, (J, ) is a generalized derivation. O

Let A be an ultraweakly closed subalgebra of B(H). The Banach space M is
said to be a dual normal Banach A-bimodule if M is a Banach A-bimodule, M
is a dual space, and for any m € M, the maps A 3 a — am and A > a — ma
are ultraweak to weak* continuous.

Corollary 4.5. Let £ be a CDCSL on a complex separable Hilbert space H.
If § is a linear mapping from algl into a dual normal unital Banach algLl-
bimodule M and o : A x A — M is a Hochschild 2-cocycle bilinear mapping
satisfying condition (x), then (J,«) is a generalized derivation.

Proof. Let T = span{T : T € algL,rankT = 1}. Then 7T is an ideal of alg. By
[3, Lemma 2.3], Z is contained in the linear span of the idempotents in algL.
By [5, Theorem 3|, 7 is a separating set of M. By Theorem 4.3, (4, ) is a
generalized derivation. O

Corollary 4.6. Let L be a CDCSL on a complex separable Hilbert space H.
If (6, ) is a local generalized derivation from algl into a dual normal unital
Banach algL-bimodule M, then (0, «) is a generalized derivation.
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