J. Korean Math. Soc. **47** (2010), No. 3, pp. 523–535 DOI 10.4134/JKMS.2010.47.3.523

$\tau\text{-}\mathrm{CENTRALIZERS}$ AND GENERALIZED DERIVATIONS

JIREN ZHOU

ABSTRACT. In this paper, we show that Jordan τ -centralizers and local τ -centralizers are τ -centralizers under certain conditions. We also discuss a new type of generalized derivations associated with Hochschild 2-cocycles and introduce a special local generalized derivation associated with Hochschild 2-cocycles. We prove that if \mathcal{L} is a CDCSL and \mathcal{M} is a dual normal unital Banach alg \mathcal{L} -bimodule, then every local generalized derivation.

1. Introduction

Let \mathcal{A} be an algebra with identity and let τ be an endomorphism of \mathcal{A} .

A linear mapping $f : \mathcal{A} \to \mathcal{A}$ is called a *left (right) centralizer* of \mathcal{A} if f(y) = f(1)y (f(y) = yf(1)) for any $y \in \mathcal{A}$. If f is a left and right centralizer, then it is to call f a *centralizer*. A linear mapping $f : \mathcal{A} \to \mathcal{A}$ is called a *left (right)* Jordan centralizer of \mathcal{A} if $f(x^2) = f(x)x$ $(f(x^2) = xf(x))$ for any $x \in \mathcal{A}$. f is called a Jordan centralizer of \mathcal{A} if f(xy + yx) = f(x)y + yf(x) = f(y)x + xf(y) for any $x, y \in \mathcal{A}$. In [8], Zalar shows that a left Jordan centralizer of a semiprime ring is a left centralizer and each Jordan centralizer of a semiprime ring is a centralizer.

A linear mapping $f : \mathcal{A} \to \mathcal{A}$ is called a *left (right)* τ -centralizer of \mathcal{A} if $f(y) = f(1)\tau(y)$ $(f(y) = \tau(y)f(1))$ for any $x, y \in \mathcal{A}$. If f is a left and right τ -centralizer, then it is to call f a τ -centralizer. A linear mapping $f : \mathcal{A} \to \mathcal{A}$ is called a *left (right) Jordan* τ -centralizer of \mathcal{A} if $f(x^2) = f(x)\tau(x)$ $(f(x^2) = \tau(x)f(x))$ for any $x \in \mathcal{A}$. f is called a *Jordan* τ -centralizer of \mathcal{A} if

 $f(xy + yx) = f(x)\tau(y) + \tau(y)f(x) = f(y)\tau(x) + \tau(x)f(y)$

for any $x, y \in \mathcal{A}$. Albaş [1] shows that under some conditions, a left Jordan τ -centralizer of a semiprime ring is a left τ -centralizer and each Jordan τ -centralizer of a semiprime ring is a τ -centralizer.

We call f a local left centralizer of \mathcal{A} if for each $x \in \mathcal{A}$, there is a left centralizer f_x of \mathcal{A} such that $f(x) = f_x(x)$. Similarly, we can define local right

 $\bigodot 2010$ The Korean Mathematical Society

Received July 29, 2008; Revised October 24, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 47B47, 47L35.

Key words and phrases. Jordan τ -centralizer, local τ -centralizer, local generalized derivation, Hochschild 2-cocycle.

centralizer and *local centralizer*. In [2], Hadwin studies local centralizers on von Neumann algebras and nest algebras.

Recently, Nakajima introduced the following definitions. Let \mathcal{A} be an algebra and \mathcal{M} be an \mathcal{A} -bimodule. Let $\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be a bilinear mapping. α is called a *Hochschild 2-cocycle* if

(1)
$$x\alpha(y,z) - \alpha(xy,z) + \alpha(x,yz) - \alpha(x,y)z = 0.$$

A linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is called a *generalized derivation* if there is a 2-cocycle α such that

(2)
$$\delta(xy) = \delta(x)y + x\delta(y) + \alpha(x,y).$$

We denote it by (δ, α) . In [7], Nakajima shows that the usual generalized derivation, left centralizer and (σ, τ) -derivation are also generalized derivations in above sense.

The distribution of this paper is as follows.

In Section 2, we prove that if $\mathcal{A}' \cap \mathcal{A} = \mathbb{C}I$, and τ is an epimorphism of \mathcal{A} , then each Jordan τ -centralizer of \mathcal{A} is τ -centralizer. And we also show that if \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg}\mathcal{L}$, then each Jordan τ -centralizer of $\operatorname{alg}\mathcal{L}$ is τ -centralizer.

We introduce the following definition. We call f a local left τ -centralizer of \mathcal{A} if for each $x \in \mathcal{A}$, there is a left τ -centralizer f_x of \mathcal{A} such that $f(x) = f_x(x)$. Similarly, we can define local right τ -centralizer and local τ -centralizer. In Section 3, we generalize some results of [2] to local τ -centralizer. And we show that if \mathcal{L} is a CDCSL on H and τ is an automorphism of alg \mathcal{L} , then each local τ -centralizer.

In Section 4, we introduce a new type of local generalized derivations and we show that every local generalized derivation of above type from CDCSL into its dual normal unital Banach \mathcal{A} -bimodule is a generalized derivation.

The following notations will be used in our paper.

Let X be a complex Banach space with dual X^* and let B(X) be the set of all bounded linear maps from X into itself. Let H be a complex separable Hilbert space.

A subspace lattice on X is a collection \mathcal{L} of subspaces of X with (0), X in \mathcal{L} and such that for every family $\{M_r\}$ of elements of \mathcal{L} , both $\wedge M_r$ and $\vee M_r$ belong to \mathcal{L} , where $\wedge M_r$ denotes the intersection of $\{M_r\}$ and $\vee M_r$ denotes the closed linear span of $\{M_r\}$. A totally ordered subspace lattice is called a *nest*. For a subspace lattice \mathcal{L} , we define alg \mathcal{L} by

$$\operatorname{alg} \mathcal{L} = \{ T \in B(H) : TN \subseteq N, \forall N \in \mathcal{L} \}.$$

For any $L \subseteq X$, $L^{\perp} = \{f \in X^*, f(x) = 0 \text{ for all } x \in L\}$. Let $x \in X$, $f \in X^*$ be nonzero. The *rank one operator* $x \otimes f$ is defined by $z \to f(z)x$ for any $z \in X$. For any nonzero $x, y \in H$, the operator $x \otimes y$ is defined by $z \to (z, y)x$ for any $z \in H$. If \mathcal{L} is a subspace lattice of X and $E \in \mathcal{L}$, we define

$$E_{-} = \lor \{F \in \mathcal{L}, F \not\supseteq E\}$$
 and $E_{+} = \land \{F \in \mathcal{L}, F \nsubseteq E\}.$

It is well known that $x \otimes f \in \text{alg}\mathcal{L}$ if and only if there is $E \in \mathcal{L}$ such that $x \in E$ and $f \in (E_{-})^{\perp}$ (equivalently, $x \in E_{+}$ and $f \in E^{\perp}$).

A subspace lattice \mathcal{L} is said to be *completely distributive* if for every family $\{X_{i,j}\}_{i \in I, j \in J}$ of elements in \mathcal{L} ,

$$\bigwedge_{i \in I} \bigvee_{j \in J} x_{i,j} = \bigvee_{f \in J_I} \bigwedge_{i \in I} x_{i,f(i)} \text{ and } \bigvee_{i \in I} \bigwedge_{j \in J} x_{i,j} = \bigwedge_{f \in J_I} \bigvee_{i \in I} x_{i,f(i)},$$

where J_I denotes the set of all maps from I into J.

A Hilbert space subspace lattice \mathcal{L} is called a *commutative subspace lattice* (CSL) if it consists of mutually commuting projections. If \mathcal{L} is a commutative subspace lattice, then alg \mathcal{L} is called a *CSL algebra*. If \mathcal{L} is a completely distributive commutative subspace lattice (CDCSL), then alg \mathcal{L} is called a *CDCSL* algebra.

Given a subspace lattice \mathcal{L} on X, put

$$\mathcal{J}_{\mathcal{L}} = \{ K \in \mathcal{L} : K \neq \{ 0 \} \text{ and } K_{-} \neq X \}.$$

Call \mathcal{L} a \mathcal{J} -subspace lattice on X if it satisfies the following conditions:

 $(1) \lor \{K : K \in \mathcal{J}_{\mathcal{L}}\} = X;$

(2) $\land \{K_{-} : K \in \mathcal{J}_{\mathcal{L}}\} = \{0\};$

(3) $K \vee K_{-} = X$ for any $K \in \mathcal{J}_{\mathcal{L}}$;

(4) $K \wedge K_{-} = 0$ for any $K \in \mathcal{J}_{\mathcal{L}}$.

In this paper, we suppose that \mathcal{A} is a unital algebra and \mathcal{M} is a unital \mathcal{A} -bimodule.

2. Jordan τ -centralizers

Since the proof of the following lemma is analogous to that of [1, Lemma 3], we omit it.

Lemma 2.1. Let f be a left Jordan τ -centralizer of an algebra A. Then

(1) $f(xy + yx) = f(x)\tau(y) + f(y)\tau(x)$ for all $x, y \in \mathcal{A}$,

(2) $f(xyx) = f(x)\tau(y)\tau(x)$ for all $x, y \in \mathcal{A}$,

(3) $f(xyz + zyx) = f(x)\tau(y)\tau(z) + f(z)\tau(y)\tau(x)$ for all $x, y \in \mathcal{A}$,

(4) D(x,y) = -D(y,x), where $D(x,y) = f(xy) - f(x)\tau(y)$ for all $x, y \in A$.

Lemma 2.2. Each left Jordan τ -centralizer f of a unital algebra \mathcal{A} is a left τ -centralizer.

Proof. Let I be the identity in \mathcal{A} . Since τ is an endomorphism of \mathcal{A} , it follows that $\tau(I) = I$. Let $D(x, y) = f(xy) - f(x)\tau(y)$ for any $x, y \in \mathcal{A}$. So $D(x, I) = f(xI) - f(x)\tau(I) = 0$ for all $x \in \mathcal{A}$. By Lemma 2.1(4), we have that D(I, x) = -D(x, I) = 0 for all $x \in \mathcal{A}$. Thus

(3)
$$f(x) = f(Ix) = f(I)\tau(x)$$

for all $x \in \mathcal{A}$.

In what follows, we suppose that \mathcal{A} is a unital subalgebra of B(X) such that $\mathcal{A}' \cap \mathcal{A} = \mathbb{C}I$, where I is the identity in \mathcal{A} , and τ is an epimorphism of \mathcal{A} . And we denote by $Z = \mathcal{A}' \cap \mathcal{A} = \mathbb{C}I$ the center of \mathcal{A} .

Lemma 2.3. Let a be a fixed element in \mathcal{A} . If $a\tau(x) - \tau(x)a \in Z$ for all $x \in \mathcal{A}$, then $a \in Z$.

Proof. Since $a\tau(x) - \tau(x)a \in \mathbb{C}I$, by [4, Question 182], it follows that $a\tau(x) - \tau(x)a = 0$. Since τ is surjective, we have that $a \in Z$.

Lemma 2.4. Let a be a fixed element in \mathcal{A} , and $f(x) = a\tau(x) + \tau(x)a$ for any $x \in \mathcal{A}$. If f is a Jordan τ -centralizer of \mathcal{A} , then $a \in Z$.

Proof. Since f is a Jordan τ -centralizer of \mathcal{A} , it follows that $f(xy + yx) = f(x)\tau(y) + \tau(y)f(x)$ for all $x, y \in \mathcal{A}$. Hence

$$\begin{aligned} a\tau(xy + yx) + \tau(xy + yx)a &= (a\tau(x) + \tau(x)a)\tau(y) + \tau(y)(a\tau(x) + \tau(x)a), \\ a\tau(y)\tau(x) + \tau(x)\tau(y)a &= \tau(x)a\tau(y) + \tau(y)a\tau(x), \\ \tau(x)(a\tau(y) - \tau(y)a) &= (a\tau(y) - \tau(y)a)\tau(x) \end{aligned}$$

for all $x, y \in A$. Since τ is surjective, we have that $a\tau(y) - \tau(y)a \in Z$. Hence $a \in Z$ by Lemma 2.3.

Lemma 2.5. Every Jordan τ -centralizer f of A maps Z into Z.

Proof. For any $c \in Z$, let a = f(c). Since f is a Jordan τ -centralizer of \mathcal{A} , we have that

$$2f(cx) = f(cx + xc) = f(c)\tau(x) + \tau(x)f(c) = a\tau(x) + \tau(x)a$$

for all $x \in \mathcal{A}$. Let g(x) = 2f(cx). Then

$$\begin{array}{lll} g(xy+yx) &=& 2f(c(xy+yx)) = 2f(cxy+ycx) \\ &=& 2(f(cx)\tau(y)+\tau(y)f(cx)) = g(x)\tau(y)+\tau(y)g(x), \\ g(xy+yx) &=& 2f(c(xy+yx)) = 2f(xcy+cyx) \\ &=& 2(f(cy)\tau(x)+\tau(x)f(cy)) = g(y)\tau(x)+\tau(x)g(y) \end{array}$$

for any $x, y \in A$. Thus, we have that g is a Jordan τ -centralizer of A. By Lemma 2.4, we have $a = f(c) \in Z$ for all $c \in Z$.

Theorem 2.6. Each Jordan τ -centralizer f of A is τ -centralizer.

Proof. By Lemma 2.5, we have that

$$2f(x) = f(xI + Ix) = f(I)\tau(x) + \tau(x)f(I) = 2f(I)\tau(x) = 2\tau(x)f(I)$$

for all $x \in \mathcal{A}$. Thus

$$f(x) = f(I)\tau(x) = \tau(x)f(I)$$

for all $x \in \mathcal{A}$.

Corollary 2.7. Let \mathcal{L} be a nest on X and let τ be an epimorphism of $alg\mathcal{L}$. Then each Jordan τ -centralizer of $alg\mathcal{L}$ is τ -centralizer.

Proof. Since \mathcal{L} is a nest on X, we have that $(alg\mathcal{L})' = \mathbb{C}I$. By Theorem 2.6, we conclude the proof.

Definition 2.8. Let \mathcal{L} be a subspace lattice on X and $L \in \mathcal{L}$. L is said to be a comparable element of \mathcal{L} if for any $M \in \mathcal{L}$, $L \subseteq M$ or $L \supset M$.

Lemma 2.9 ([6, Proposition 2.9]). Suppose that \mathcal{L} is a subspace lattice on X with a nontrivial comparable element M. If there is a subspace N of X such that $X = M \oplus N$, then $(\operatorname{alg} \mathcal{L})' = \mathbb{C}I$.

By Theorem 2.6 and Lemma 2.9, we can show the following result.

Corollary 2.10. Let \mathcal{L} be a subspace lattice on X with a nontrivial comparable element M. If there is a subspace N of X such that $X = M \oplus N$ and τ is a surjective endomorphism of $\operatorname{alg}\mathcal{L}$, then each Jordan τ -centralizer of $\operatorname{alg}\mathcal{L}$ is a τ -centralizer.

Remark 2.11. Let $\mathcal{L} = \{(0), K, L, M, X\}$ be a pentagonal lattice on X. Then $(\operatorname{alg} \mathcal{L})'$ is trivial. Hence, by Theorem 2.6, we have that each Jordan τ -centralizer of $\operatorname{alg} \mathcal{L}$ is τ -centralizer.

In the following, we give a result of an algebra \mathcal{A} such that the center of $\mathcal{A} \neq \mathbb{C}I$.

Lemma 2.12. Suppose that \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg}\mathcal{L}$. Then every Jordan τ -centralizer f of $\operatorname{alg}\mathcal{L}$ maps I into the center Z.

Proof. Let $e = e^2 \in \text{alg}\mathcal{L}$. Since τ is an automorphism of $\text{alg}\mathcal{L}$, it follows that $P = \tau^{-1}(e)$ such that $P = P^2 \in \text{alg}\mathcal{L}$. Since f is a Jordan τ -centralizer, it follows that

(4) $2f(P) = f(PI + IP) = f(I)\tau(P) + \tau(P)f(I),$

(5)
$$2f(P) = f(P^2 + P^2) = f(P)\tau(P) + \tau(P)f(P).$$

Thus

(6)
$$\tau(P)f(P)\tau(P) = \tau(P)f(I)\tau(P),$$

(7)
$$f(P)\tau(P) = \tau(P)f(P) = \tau(P)f(P)\tau(P)$$

By (4), (5), (6), (7), we have that

$$\begin{split} f(I)\tau(P) &= 2f(P)\tau(P) - \tau(P)f(I)\tau(P) = \tau(P)f(P)\tau(P), \\ \tau(P)f(I) &= 2\tau(P)f(P) - \tau(P)f(I)\tau(P) = \tau(P)f(P)\tau(P). \end{split}$$

It follows that $f(I)\tau(P) = \tau(P)f(I)$. Thus f(I)e = ef(I) for any $e = e^2 \in alg\mathcal{L}$. By [3, Lemma 2.3], for any $x \otimes y \in alg\mathcal{L}$, $x \otimes y \in span\{e \in alg\mathcal{L}, e = e^2\}$. We have that

$$f(I)(x \otimes y) = (x \otimes y)f(I)$$

Let $\mathcal{R}_1(\text{alg}\mathcal{L})$ be the algebra generated by all of rank one operators of $\text{alg}\mathcal{L}$. By [5, Theorem 3],

$$\overline{\mathcal{R}_1(\mathrm{alg}\mathcal{L})}^{SOT} = \mathrm{alg}\mathcal{L}.$$

JIREN ZHOU

It follows that f(I)T = Tf(I) for any T in $\operatorname{alg}\mathcal{L}$. So $f(I) \in Z$.

Theorem 2.13. If \mathcal{L} is a CDCSL on H and τ is an automorphism of $\operatorname{alg}\mathcal{L}$. then each Jordan τ -centralizer of alg \mathcal{L} is τ -centralizer.

Proof. Let f be a Jordan τ -centralizer of alg \mathcal{L} . We have that

$$2f(x) = f(Ix + xI) = f(I)\tau(x) + \tau(x)f(I).$$

By Lemma 2.12, $f(I) \in Z$, it follows that $f(I)\tau(x) = \tau(x)f(I)$. Thus f(x) = $f(I)\tau(x) = \tau(x)f(I).$ \square

3. Local τ -centralizer

In this section, we suppose that \mathcal{R} is a commutative ring with identity, \mathcal{A} is an algebra with identity over \mathcal{R} , and τ is an endomorphism of \mathcal{A} .

Proposition 3.1. Suppose $\varphi : \mathcal{A} \to \mathcal{A}$ is a linear mapping and $\tau : \mathcal{A} \to \mathcal{A}$ is an endomorphism such that for any $e = e^2 \in \mathcal{A}, \varphi(e) \in \mathcal{A}\tau(e)$ (respectively, $\varphi(e) \in \tau(e)\mathcal{A}$). Then $\varphi(a) = \varphi(I)\tau(a)$ (respectively, $\varphi(a) = \tau(a)\varphi(I)$) for any a in the linear span of all idempotents in \mathcal{A} .

Proof. Suppose that $e = e^2 \in \mathcal{A}$. Since $I - e = (I - e)^2 \in \mathcal{A}$, it follows that there are c, d in \mathcal{A} such that $\varphi(e) = c\tau(e)$ and $\varphi(I-e) = d\tau(I-e)$. Hence $\varphi(I) = \varphi(e) + \varphi(I-e) = c\tau(e) + d\tau(I-e)$. Multiplying by $\tau(e)$, we have that $\varphi(I)\tau(e) = c\tau(e)\tau(e) + d\tau(I-e)\tau(e) = c\tau(e^2) + d\tau((I-e)e) = c\tau(e) = \varphi(e).$ Thus $\varphi(a) = \varphi(I)\tau(a)$ for any a in span $\{e \in \mathcal{A}, e = e^2\}$.

The proof of the other case is similar.

Proposition 3.2. Suppose that $\varphi : \mathcal{A} \to \mathcal{A}$ is a linear mapping and $\tau : \mathcal{A} \to \mathcal{A}$ is an endomorphism such that for any $e = e^2 \in \mathcal{A}$, $\varphi(\mathcal{A}e) \subseteq \mathcal{A}\tau(e)$ (respectively, $\varphi(e\mathcal{A}) \subseteq \tau(e)\mathcal{A})$. Then $\varphi(a) = \varphi(I)\tau(a)$ (respectively, $\varphi(a) = \tau(a)\varphi(I)$) for any a in the algebra generated by all idempotents in \mathcal{A} .

Proof. We first show that for any idempotents e_1, \ldots, e_n in \mathcal{A} ,

 $\varphi(e_1 \cdots e_n) = \varphi(I)\tau(e_1 \cdots e_n).$ (8)

If n = 1, by Proposition 3.1, $\varphi(e_1) = \varphi(I)\tau(e_1)$.

Suppose that if n = k, (8) is true. For n = k + 1, by assumption, there are $c, d \text{ in } \mathcal{A} \text{ such that}$

$$\varphi(e_1 \cdots e_k e_{k+1}) = c\tau(e_{k+1}), \ \varphi(e_1 \cdots e_k(I - e_{k+1})) = d\tau(I - e_{k+1}).$$

Hence

$$\varphi(e_1 \cdots e_k) = c\tau(e_{k+1}) + d\tau(I - e_{k+1}).$$

Multiplying by $\tau(e_{k+1})$, we have that

$$\varphi(e_1 \cdots e_k)\tau(e_{k+1}) = c\tau(e_{k+1}) = \varphi(e_1 \cdots e_{k+1}),$$

and therefore

 $\varphi(e_1\cdots e_{k+1}) = \varphi(e_1\cdots e_k)\tau(e_{k+1}) = \varphi(I)\tau(e_1\cdots e_k)\tau(e_{k+1}) = \varphi(I)\tau(e_1\cdots e_{k+1}).$

Thus $\varphi(a) = \varphi(I)\tau(a)$ for any *a* in the algebra generated by all idempotents in \mathcal{A} .

We call a left (right) ideal \mathcal{T} of \mathcal{A} a separating left (right) set, if for any a in \mathcal{A} , $a\mathcal{T} = \{0\}$ ($\mathcal{T}a = \{0\}$) implies a = 0. If \mathcal{T} is both a separating left set a separating right set then we call it a separating set.

Proposition 3.3. Suppose \mathcal{A} has a left (right) ideal \mathcal{T} that is contained in the algebra generated by all idempotents in \mathcal{A} . If $\varphi : \mathcal{A} \to \mathcal{A}$ is a linear mapping and $\tau : \mathcal{A} \to \mathcal{A}$ is an endomorphism of \mathcal{A} such that $\tau(\mathcal{T})$ is a separating left (right) set of \mathcal{A} and $\varphi(\mathcal{A}e) \subseteq \mathcal{A}\tau(e)$ (respectively, $\varphi(e\mathcal{A}) \subseteq \tau(e)\mathcal{A}$) for any $e = e^2 \in \mathcal{A}$. Then $\varphi(a) = \varphi(I)\tau(a)$ (respectively, $\varphi(a) = \tau(a)\varphi(I)$) for any $a \in \mathcal{A}$.

Proof. We only prove the case that \mathcal{T} is a left ideal and $\tau(\mathcal{T})$ is a separating left set of \mathcal{A} , the other case is similar.

We first show that for any idempotents $e_1 \cdots e_n$ in \mathcal{A} , a in \mathcal{A} ,

(9)
$$\varphi(a)\tau(e_1\cdots e_n) = \varphi(ae_1\cdots e_n).$$

If n = 1, since $\varphi(\mathcal{A}e_1) \subseteq \mathcal{A}\tau(e_1)$, $\varphi(\mathcal{A}(I - e_1)) \subseteq \mathcal{A}\tau(I - e_1)$, we know that there are c_1 and d_1 in \mathcal{A} such that $\varphi(ae_1) = c_1\tau(e_1)$, $\varphi(a(I - e_1)) = d_1\tau(I - e_1)$. So

$$\varphi(a) = \varphi(ae_1) + \varphi(a(I - e_1)) = c_1\tau(e_1) + d_1\tau(I - e_1).$$

Thus $\varphi(a)\tau(e_1) = c_1\tau(e_1) = \varphi(ae_1).$

Suppose that if n = k, (9) is true. For n = k + 1, by assumption, there are c_{k+1}, d_{k+1} in \mathcal{A} such that

$$\varphi(ae_1 \cdots e_k e_{k+1}) = c_{k+1} \tau(e_{k+1}), \ \varphi(ae_1 \cdots e_k (I - e_{k+1})) = d_{k+1} \tau(e_{k+1}),$$

and therefore

$$\varphi(ae_1 \cdots e_k) = \varphi(ae_1 \cdots e_k e_{k+1}) + \varphi(ae_1 \cdots e_k (I - e_{k+1}))$$
$$= c_{k+1}\tau(e_{k+1}) + d_{k+1}\tau(I - e_{k+1}).$$

It follows that

$$\varphi(ae_1\cdots e_k)\tau(e_{k+1}) = c_{k+1}\tau(e_{k+1}) = \varphi(ae_1\cdots e_{k+1}).$$

Thus

$$\varphi(ae_1\cdots e_{k+1}) = \varphi(ae_1\cdots e_k)\tau(e_{k+1}) = \varphi(a)\tau(e_1\cdots e_{k+1})$$

Hence $\varphi(at) = \varphi(a)\tau(t)$, where t in the algebra generated by idempotents in \mathcal{A} . In particular, $\varphi(at) = \varphi(a)\tau(t)$ for any a in \mathcal{A} , t in \mathcal{T} . Since \mathcal{T} is a left ideal, it follows that

$$\varphi(at) = \varphi(I)\tau(at) = \varphi(I)\tau(a)\tau(t).$$

Thus $(\varphi(a) - \varphi(I)\tau(a))\tau(t) = 0$. Since $\tau(\mathcal{T})$ is a separating left set, it follows that $\varphi(a) = \varphi(I)\tau(a)$ for any $a \in \mathcal{A}$.

Corollary 3.4. Suppose that \mathcal{A} has a separating left (right) set \mathcal{T} that is contained in the algebra generated by all idempotents in \mathcal{A} . If $\varphi : \mathcal{A} \to \mathcal{A}$ is a linear mapping and $\tau : \mathcal{A} \to \mathcal{A}$ is an automorphism such that for any $e = e^2 \in \mathcal{A}$, $\varphi(\mathcal{A}e) \subseteq \mathcal{A}\tau(e)$ (respectively, $\varphi(e\mathcal{A}) \subseteq \tau(e)\mathcal{A}$), then $\varphi(a) = \varphi(I)\tau(a)$ (respectively, $\varphi(a) = \tau(a)\varphi(I)$) for any $a \in \mathcal{A}$.

Corollary 3.5. Suppose that a subspace lattice \mathcal{L} satisfies one of the following conditions:

(1) \mathcal{L} is a \mathcal{J} -subspace lattice on a Banach space X,

(2) \mathcal{L} is CDCSL on a separable Hilbert space H,

(3) \mathcal{L} satisfies $0_+ \neq \{0\}, X_- \neq X$,

and τ is an automorphism of $\operatorname{alg}\mathcal{L}$.

If $\varphi : \operatorname{alg} \mathcal{L} \to \operatorname{alg} \mathcal{L}$ is a local τ -centralizer, then φ is a τ -centralizer.

Proof. Case 1. \mathcal{L} satisfies Condition (1). Let $\mathcal{I} = \operatorname{span}\{T : T \in \operatorname{alg}\mathcal{L}, \operatorname{rank} T = 1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg}\mathcal{L}$. By [3, Lemma 2.10], \mathcal{I} is contained in the linear span of the idempotents in $\operatorname{alg}\mathcal{L}$. By [3, Lemma 2.11], \mathcal{I} is a separating set of $\operatorname{alg}\mathcal{L}$.

Case 2. \mathcal{L} satisfies Condition (2). Let $\mathcal{I} = \operatorname{span}\{T : T \in \operatorname{alg}\mathcal{L}, \operatorname{rank} T = 1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg}\mathcal{L}$. By [3, Lemma 2.3], \mathcal{I} is contained in the linear span of the idempotents in $\operatorname{alg}\mathcal{L}$. It follows from [5, Theorem 3] that \mathcal{I} is a separating set of $\operatorname{alg}\mathcal{L}$.

Case 3. \mathcal{L} satisfies Condition (3). Let $\mathcal{I} = \operatorname{span}\{x \otimes f_0, x_0 \otimes f : x \in X, f_0 \in (X_-)^{\perp}, x_0 \in 0_+, f \in X^*\}$. Then \mathcal{I} is an ideal of $\operatorname{alg}\mathcal{L}$ and \mathcal{I} is a separating set of $\operatorname{alg}\mathcal{L}$. For any $x \in X$, $0 \neq f_0 \in (X_-)^{\perp}$, then $x \otimes f_0 \in \operatorname{alg}\mathcal{L}$. If $f_0(x) \neq 0$, then $\frac{1}{f_0(x)}x \otimes f_0$ is an idempotent in \mathcal{I} . If $f_0(x) = 0$, choose $x_1 \in X$ such that $f_0(x_1) = 1$, we have that $x \otimes f_0 = \frac{1}{2}(x_1 + x) \otimes f_0 - \frac{1}{2}(x_1 - x) \otimes f_0$, both $(x_1 + x) \otimes f_0$ and $(x_1 - x) \otimes f_0$ are idempotents. The case of $x_0 \otimes f$ is similarly. Thus \mathcal{I} is contained in the algebra generated by the idempotents in $\operatorname{alg}\mathcal{L}$.

Thus, by Cases 1, 2 and 3, if \mathcal{L} satisfies one of above conditions, $\operatorname{alg}\mathcal{L}$ has an ideal \mathcal{I} which is contained in a subalgebra of $\operatorname{alg}\mathcal{L}$ generated by its idempotents and \mathcal{I} separates $\operatorname{alg}\mathcal{L}$.

Since φ is a local τ -centralizer, we have that for each x in $\operatorname{alg}\mathcal{L}$, there is a τ -centralizer φ_x such that $\varphi(x) = \varphi_x(x)$. It follows that for any $e = e^2 \in \operatorname{alg}\mathcal{L}$, $a \in \operatorname{alg}\mathcal{L}$,

$$\varphi(ae) = \varphi_{ae}(ae) = \varphi_{ae}(a)\tau(e) \in (\mathrm{alg}\mathcal{L})\tau(e).$$

By Corollary 3.4, $\varphi(a) = \varphi(I)\tau(a)$ for any $a \in \operatorname{alg}\mathcal{L}$. Thus φ is a left τ -centralizer. Similarly, φ is also a right τ -centralizer. Hence φ is a τ -centralizer.

4. Generalized derivations associate with Hochschild 2-cocycles

In this section, we suppose that \mathcal{A} is a unital algebra and \mathcal{M} is a unital \mathcal{A} -bimodule.

Motivated by Nakajima [7], we introduce a new type of local generalized derivation. A map (δ, α) is called a *local generalized derivation* if for any $x \in \mathcal{A}$, there is a generalized derivation (δ_x, α) such that $\delta(x) = \delta_x(x)$. If $\alpha = 0$, then δ is a local derivation.

Lemma 4.1. Let δ be a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be a Hochschild 2-cocycle bilinear mapping. Then the following relations are equivalent

(i) $P^{\perp}\delta(PAQ)Q^{\perp} = P^{\perp}\alpha(PA,Q)Q^{\perp}$, (ii) $\delta(PAQ) = \delta(PA)Q + P\delta(AQ) - P\delta(A)Q + \alpha(PA,Q) - P\alpha(A,Q)$, where $P = P^2, Q = Q^2, A \in \mathcal{A}$.

Proof. It is obvious that (ii) implies (i).

Suppose that (i) is true. Let $h(x,y) = \delta(xy) - \alpha(x,y)$. Then

$$P^{\perp}h(PA,Q)Q^{\perp} = 0,$$

 $Ph(A,Q)Q^{\perp} = Ph(PA,Q)Q^{\perp} = (I-P^{\perp})h(PA,Q)Q^{\perp} = h(PA,Q)Q^{\perp}.$ Therefore, we have that

$$\begin{split} h(PA,Q) - Ph(A,Q) &= (h(PA,Q) - Ph(A,Q))Q \\ &= h(PA,I)Q - h(PA,Q^{\perp})Q - Ph(A,Q)Q \\ &= h(PA,I)Q - Ph(A,Q^{\perp})Q - Ph(A,Q)Q \\ &= h(PA,I)Q - Ph(A,I)Q. \end{split}$$

Then

$$\delta(PAQ) - \alpha(PA, Q) - P\delta(AQ) + P\alpha(A, Q)$$

= $\delta(PA)Q - \alpha(PA, I)Q - P\delta(A)Q + P\alpha(A, I)Q.$

Thus

$$\delta(PAQ) = P\delta(AQ) + \delta(PA)Q - P\delta(A)Q + \alpha(PA,Q) - P\alpha(A,Q) -\alpha(PA,I)Q + P\alpha(A,I)Q.$$

Since α is Hochschild 2-cocycle, we have that

$$P\alpha(A, I) - \alpha(PA, I) + \alpha(P, A) - \alpha(P, A) = 0.$$

Hence

$$\delta(PAQ) = P\delta(AQ) + \delta(PA)Q - P\delta(A)Q + \alpha(PA,Q) - P\alpha(A,Q).$$

Let δ be a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be a Hochschild 2-cocycle bilinear mapping. We say that (δ, α) satisfies the condition (*) if

$$\delta(PAQ) = P\delta(AQ) + \delta(PA)Q - P\delta(A)Q + \alpha(PA,Q) - P\alpha(A,Q)$$

and $\delta(I) = -\alpha(I, I)$ hold for each $A \in \mathcal{A}$ and any idempotents P, Q in \mathcal{A} .

Lemma 4.2. Suppose that δ is a linear mapping from \mathcal{A} into \mathcal{M} and α : $\mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying the condition (*). Then

$$\delta(P_1 \cdots P_n A Q_1 \cdots Q_m) = \delta(P_1 \cdots P_n A) Q_1 \cdots Q_m + P_1 \cdots P_n \delta(A Q_1 \cdots Q_m) - P_1 \cdots P_n \delta(A) Q_1 \cdots Q_m + \alpha(P_1 \cdots P_n A, Q_1 \cdots Q_m)$$

(10) $-P_1\cdots P_n\alpha(A,Q_1\cdots Q_m)$

for any idempotents $P_1, \ldots, P_n, Q_1, \ldots, Q_m$ in \mathcal{A} and any \mathcal{A} in \mathcal{A} .

Proof. We first show that for any positive integer n,

$$\delta(P_1 \cdots P_n AQ) = \delta(P_1 \cdots P_n A)Q + P_1 \cdots P_n \delta(AQ) - P_1 \cdots P_n \delta(A)Q$$
(11)
$$+\alpha(P_1 \cdots P_n A, Q) - P_1 \cdots P_n \alpha(A, Q).$$

If n = 1, by the condition (*), (11) is obvious.

Suppose that if n = k, (11) is true. For n = k + 1, by the condition (*), it follows

$$\begin{split} &\delta(P_1 \cdots P_{k+1} AQ) \\ = & \delta(P_1 \cdots P_{k+1} A)Q + P_1 \delta(P_2 \cdots P_{k+1} AQ) - P_1 \delta(P_2 \cdots P_{k+1} A)Q \\ & + \alpha(P_1 \cdots P_{k+1} A, Q) - P_1 \alpha(P_2 \cdots P_{k+1} A, Q) \\ = & \delta(P_1 \cdots P_{k+1} A)Q + P_1(P_2 \cdots P_{k+1} \delta(AQ) - P_2 \cdots P_{k+1} \delta(A)Q \\ & -P_2 \cdots P_{k+1} \alpha(A, Q)) + \alpha(P_1 \cdots P_{k+1} A, Q) \\ = & \delta(P_1 \cdots P_{k+1} A)Q + P_1 \cdots P_{k+1} \delta(AQ) - P_1 \cdots P_{k+1} \delta(A)Q \\ & -P_1 \cdots P_{k+1} \alpha(A, Q) + \alpha(P_1 \cdots P_{k+1} A, Q). \end{split}$$

Now we show that (10) is true.

 $+\alpha(A,Q_1\cdots Q_{k+1}))$

If m = 1, by (11), we have that (10) is true. Suppose that if m = k, (10) is true. For m = k + 1, by the condition (*) and (11), we have

$$\begin{split} &\delta(P_1\cdots P_nAQ_1\cdots Q_{k+1}) \\ = & \delta(P_1\cdots P_nAQ_1\cdots Q_k)Q_{k+1} + P_1\cdots P_n\delta(AQ_1\cdots Q_{k+1}) \\ & -P_1\cdots P_n\delta(AQ_1\cdots Q_k)Q_{k+1} + \alpha(P_1\cdots P_nAQ_1\cdots Q_k,Q_{k+1}) \\ & -P_1\cdots P_n\alpha(AQ_1\cdots Q_k,Q_k+1) \\ = & \delta(P_1\cdots P_nA)Q_1\cdots Q_{k+1} + P_1\cdots P_n\delta(AQ_1\cdots Q_{k+1}) \\ & -P_1\cdots P_n\delta(A)Q_1\cdots Q_{k+1} + \alpha(P_1\cdots P_nA,Q_1\cdots Q_k)Q_{k+1} \\ & +\alpha(P_1\cdots P_nAQ_1\cdots Q_k,Q_{k+1}) - P_1\cdots P_n(\alpha(AQ_1\cdots Q_k,Q_{k+1})) \\ & +\alpha(A,Q_1\cdots Q_k)Q_{k+1}) \\ = & \delta(P_1\cdots P_nA)Q_1\cdots Q_{k+1} + P_1\cdots P_n\delta(AQ_1\cdots Q_{k+1}) \\ & -P_1\cdots P_n\delta(A)Q_1\cdots Q_{k+1} + P_1\cdots P_nA\alpha(Q_1\cdots Q_k,Q_{k+1}) \\ & +\alpha(P_1\cdots P_nA,Q_1\cdots Q_{k+1}) - P_1\cdots P_n(A\alpha(Q_1\cdots Q_k,Q_{k+1})) \\ \end{split}$$

$$= \delta(P_1 \cdots P_n A)Q_1 \cdots Q_{k+1} + P_1 \cdots P_n \delta(AQ_1 \cdots Q_{k+1}) -P_1 \cdots P_n \delta(A)Q_1 \cdots Q_{k+1} + \alpha(P_1 \cdots P_n A, Q_1 \cdots Q_{k+1}) -P_1 \cdots P_n \alpha(A, Q_1 \cdots Q_{k+1}).$$

Let \mathcal{I} be an ideal of \mathcal{A} . We say that \mathcal{I} is a *separating set* of \mathcal{M} if for any $m, n \in \mathcal{M}, m\mathcal{I} = \{0\}$ implies m = 0 and $\mathcal{I}n = \{0\}$ implies n = 0.

Theorem 4.3. Let \mathcal{I} be a separating set of \mathcal{M} . Suppose that \mathcal{I} is contained in the algebra generated by the idempotents in \mathcal{A} . If δ is a linear mapping from \mathcal{A} into \mathcal{M} and $\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying the condition (*), then (δ, α) is a generalized derivation.

Proof. Since \mathcal{I} is contained in the algebra generated by the idempotents in \mathcal{A} , by Lemma 4.2, for any S and T in \mathcal{I} ,

$$\begin{split} \delta(ST) &= \delta(S)T + S\delta(T) - S\delta(I)T + \alpha(S,T) - S\alpha(I,T) \\ &= \delta(S)T + S\delta(T) + \alpha(S,T) + S\alpha(I,I)T - S\alpha(I,T) \\ &= \delta(S)T + S\delta(T) + \alpha(S,T). \end{split}$$

Let A belongs to \mathcal{A} . Since \mathcal{I} is an ideal of \mathcal{A} , it follows that

$$\delta(SAT) = \delta(SA)T + SA\delta(T) + \alpha(SA, T).$$

By Lemma 4.2, we have that

$$\delta(SAT) = \delta(SA)T + S\delta(AT) - S\delta(A)T + \alpha(SA,T) - S\alpha(A,T).$$

Thus (12)

$$S\delta(AT) = SA\delta(T) + S\delta(A)T + S\alpha(A,T).$$

Since \mathcal{I} is a separating set of \mathcal{M} , by (12), it follows that

(13)
$$\delta(AT) = A\delta(T) + \delta(A)T + \alpha(A,T).$$

For any $A, B \in \mathcal{A}, T \in \mathcal{I}$, by (13),

$$\begin{split} \delta(BAT) &= BA\delta(T) + \delta(BA)T + \alpha(BA,T), \\ \delta(BAT) &= B\delta(AT) + \delta(B)AT + \alpha(B,AT) \\ &= B\delta(A)T + BA\delta(T) + B\alpha(A,T) + \delta(B)AT + \alpha(B,AT) \end{split}$$

Therefore, we have that

$$\begin{split} \delta(BA)T &= B\delta(A)T + \delta(B)AT + B\alpha(A,T) - \alpha(BA,T) + \alpha(B,AT) \\ &= B\delta(A)T + \delta(B)AT + \alpha(B,A)T. \end{split}$$

Since \mathcal{I} is a separating set of \mathcal{M} , it follows that $\delta(BA) = B\delta(A) + \delta(B)A + \alpha(B, A)$.

Corollary 4.4. Let \mathcal{I} be a separating set of \mathcal{M} . Suppose that \mathcal{I} is contained in the algebra generated by idempotents in \mathcal{A} . If (δ, α) is a local generalized derivation from \mathcal{A} into \mathcal{M} , then (δ, α) is a generalized derivation.

JIREN ZHOU

Proof. Since (δ, α) is a local generalized derivation, we have that

$$P^{\perp}\delta(PAQ)Q^{\perp} = P^{\perp}\delta_{PAQ}(PAQ)Q^{\perp}$$

= $P^{\perp}(\delta_{PAQ}(PA)Q + PA\delta_{PAQ}(Q) + \alpha(PA,Q))Q^{\perp}$
= $P^{\perp}\alpha(PA,Q)Q^{\perp}$

for each $A \in \mathcal{A}$ and any idempotents P, Q in \mathcal{A} . And

$$\delta(I) = \delta_I(I)I + I\delta_I(I) + \alpha(I, I) = 2\delta(I) + \alpha(I, I).$$

Thus $\delta(I) = -\alpha(I, I)$. By Lemma 4.1, δ satisfies the condition (*). By Theorem 4.3, (δ, α) is a generalized derivation.

Let \mathcal{A} be an ultraweakly closed subalgebra of B(H). The Banach space \mathcal{M} is said to be a dual normal Banach \mathcal{A} -bimodule if \mathcal{M} is a Banach \mathcal{A} -bimodule, \mathcal{M} is a dual space, and for any $m \in \mathcal{M}$, the maps $\mathcal{A} \ni a \to am$ and $\mathcal{A} \ni a \to ma$ are ultraweak to weak^{*} continuous.

Corollary 4.5. Let \mathcal{L} be a CDCSL on a complex separable Hilbert space H. If δ is a linear mapping from $\operatorname{alg}\mathcal{L}$ into a dual normal unital Banach $\operatorname{alg}\mathcal{L}$ bimodule \mathcal{M} and $\alpha : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a Hochschild 2-cocycle bilinear mapping satisfying condition (*), then (δ, α) is a generalized derivation.

Proof. Let $\mathcal{I} = \operatorname{span}\{T : T \in \operatorname{alg}\mathcal{L}, \operatorname{rank}T = 1\}$. Then \mathcal{I} is an ideal of $\operatorname{alg}\mathcal{L}$. By [3, Lemma 2.3], \mathcal{I} is contained in the linear span of the idempotents in $\operatorname{alg}\mathcal{L}$. By [5, Theorem 3], \mathcal{I} is a separating set of \mathcal{M} . By Theorem 4.3, (δ, α) is a generalized derivation.

Corollary 4.6. Let \mathcal{L} be a CDCSL on a complex separable Hilbert space H. If (δ, α) is a local generalized derivation from $alg\mathcal{L}$ into a dual normal unital Banach $alg\mathcal{L}$ -bimodule \mathcal{M} , then (δ, α) is a generalized derivation.

Acknowledgements. The author would like to thank Professor Jiankui Li for his encouragement and help. And this paper is supported by the National Science Foundation of China.

References

- E. Albaş, On τ-centralizers of semiprime rings, Sibirsk. Mat. Zh. 48 (2007), no. 2, 243– 250; translation in Siberian Math. J. 48 (2007), no. 2, 191–196.
- [2] The Hadwin Lunch Bunch, Local multiplications on algebras spanned by idempotents, Linear and Multilinear Algebra 37 (1994), no. 4, 259–263.
- [3] D. Hadwin and J. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), no. 2, 702–714.
- [4] P. Halmos, A Hilbert Space Problem Book, Springer-Verlag, 1974.
- [5] C. Laurie and W. Longstaff, A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc. 89 (1983), no. 2, 293–297.
- [6] J. Li, Commutants and double commutants of reflexive algebras, Kyushu J. Math. 50 (1996), no. 1, 171–178.
- [7] A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turkish J. Math. 30 (2006), no. 4, 403–411.

 [8] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 609–614.

DEPARTMENT OF MATHEMATICS EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY SHANGHAI 200237, P. R. CHINA *E-mail address:* zhoujiren1983@163.com