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τ -CENTRALIZERS AND GENERALIZED DERIVATIONS

Jiren Zhou

Abstract. In this paper, we show that Jordan τ -centralizers and local
τ -centralizers are τ -centralizers under certain conditions. We also dis-
cuss a new type of generalized derivations associated with Hochschild
2-cocycles and introduce a special local generalized derivation associated
with Hochschild 2-cocycles. We prove that if L is a CDCSL and M is a
dual normal unital Banach algL-bimodule, then every local generalized
derivation of above type from algL into M is a generalized derivation.

1. Introduction

Let A be an algebra with identity and let τ be an endomorphism of A.
A linear mapping f : A → A is called a left (right) centralizer of A if f(y) =

f(1)y (f(y) = yf(1)) for any y ∈ A. If f is a left and right centralizer, then it
is to call f a centralizer. A linear mapping f : A → A is called a left (right)
Jordan centralizer of A if f(x2) = f(x)x (f(x2) = xf(x)) for any x ∈ A. f is
called a Jordan centralizer of A if f(xy + yx) = f(x)y + yf(x) = f(y)x+xf(y)
for any x, y ∈ A. In [8], Zalar shows that a left Jordan centralizer of a semiprime
ring is a left centralizer and each Jordan centralizer of a semiprime ring is a
centralizer.

A linear mapping f : A → A is called a left (right) τ -centralizer of A if
f(y) = f(1)τ(y) (f(y) = τ(y)f(1)) for any x, y ∈ A. If f is a left and right
τ -centralizer, then it is to call f a τ -centralizer. A linear mapping f : A → A
is called a left (right) Jordan τ -centralizer of A if f(x2) = f(x)τ(x) (f(x2) =
τ(x)f(x)) for any x ∈ A. f is called a Jordan τ -centralizer of A if

f(xy + yx) = f(x)τ(y) + τ(y)f(x) = f(y)τ(x) + τ(x)f(y)

for any x, y ∈ A. Albaş [1] shows that under some conditions, a left Jordan
τ -centralizer of a semiprime ring is a left τ -centralizer and each Jordan τ -
centralizer of a semiprime ring is a τ -centralizer.

We call f a local left centralizer of A if for each x ∈ A, there is a left
centralizer fx of A such that f(x) = fx(x). Similarly, we can define local right

Received July 29, 2008; Revised October 24, 2008.
2000 Mathematics Subject Classification. 47B47, 47L35.
Key words and phrases. Jordan τ -centralizer, local τ -centralizer, local generalized deriva-

tion, Hochschild 2-cocycle.

c©2010 The Korean Mathematical Society

523



524 JIREN ZHOU

centralizer and local centralizer. In [2], Hadwin studies local centralizers on von
Neumann algebras and nest algebras.

Recently, Nakajima introduced the following definitions. LetA be an algebra
and M be an A-bimodule. Let α : A × A → M be a bilinear mapping. α is
called a Hochschild 2-cocycle if

(1) xα(y, z)− α(xy, z) + α(x, yz)− α(x, y)z = 0.

A linear mapping δ : A → M is called a generalized derivation if there is a
2-cocycle α such that

(2) δ(xy) = δ(x)y + xδ(y) + α(x, y).

We denote it by (δ, α). In [7], Nakajima shows that the usual generalized
derivation, left centralizer and (σ, τ)-derivation are also generalized derivations
in above sense.

The distribution of this paper is as follows.
In Section 2, we prove that if A′ ∩ A = CI, and τ is an epimorphism of A,

then each Jordan τ -centralizer of A is τ -centralizer. And we also show that
if L is a CDCSL on H and τ is an automorphism of algL, then each Jordan
τ -centralizer of algL is τ -centralizer.

We introduce the following definition. We call f a local left τ -centralizer of
A if for each x ∈ A, there is a left τ -centralizer fx of A such that f(x) = fx(x).
Similarly, we can define local right τ -centralizer and local τ -centralizer. In
Section 3, we generalize some results of [2] to local τ -centralizer. And we show
that if L is a CDCSL on H and τ is an automorphism of algL, then each local
τ -centralizer of algL is a τ -centralizer.

In Section 4, we introduce a new type of local generalized derivations and we
show that every local generalized derivation of above type from CDCSL into
its dual normal unital Banach A-bimodule is a generalized derivation.

The following notations will be used in our paper.
Let X be a complex Banach space with dual X∗ and let B(X) be the set

of all bounded linear maps from X into itself. Let H be a complex separable
Hilbert space.

A subspace lattice on X is a collection L of subspaces of X with (0), X in
L and such that for every family {Mr} of elements of L, both ∧Mr and ∨Mr

belong to L, where ∧Mr denotes the intersection of {Mr} and ∨Mr denotes
the closed linear span of {Mr}. A totally ordered subspace lattice is called a
nest. For a subspace lattice L, we define algL by

algL = {T ∈ B(H) : TN ⊆ N, ∀N ∈ L}.
For any L ⊆ X, L⊥ = {f ∈ X∗, f(x) = 0 for all x ∈ L}. Let x ∈ X, f ∈ X∗

be nonzero. The rank one operator x ⊗ f is defined by z → f(z)x for any
z ∈ X. For any nonzero x, y ∈ H, the operator x⊗ y is defined by z → (z, y)x
for any z ∈ H. If L is a subspace lattice of X and E ∈ L, we define

E− = ∨{F ∈ L, F + E} and E+ = ∧{F ∈ L, F * E}.
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It is well known that x⊗f ∈ algL if and only if there is E ∈ L such that x ∈ E
and f ∈ (E−)⊥ (equivalently, x ∈ E+ and f ∈ E⊥).

A subspace lattice L is said to be completely distributive if for every family
{Xi,j}i∈I,j∈J of elements in L,

∧

i∈I

∨

j∈J

xi,j =
∨

f∈JI

∧

i∈I

xi,f(i) and
∨

i∈I

∧

j∈J

xi,j =
∧

f∈JI

∨

i∈I

xi,f(i),

where JI denotes the set of all maps from I into J .
A Hilbert space subspace lattice L is called a commutative subspace lattice

(CSL) if it consists of mutually commuting projections. If L is a commutative
subspace lattice, then algL is called a CSL algebra. If L is a completely dis-
tributive commutative subspace lattice (CDCSL), then algL is called a CDCSL
algebra.

Given a subspace lattice L on X, put

JL = {K ∈ L : K 6= {0} and K− 6= X}.
Call L a J -subspace lattice on X if it satisfies the following conditions:

(1) ∨{K : K ∈ JL} = X;
(2) ∧{K− : K ∈ JL} = {0};
(3) K ∨K− = X for any K ∈ JL;
(4) K ∧K− = 0 for any K ∈ JL.
In this paper, we suppose that A is a unital algebra and M is a unital

A-bimodule.

2. Jordan τ -centralizers

Since the proof of the following lemma is analogous to that of [1, Lemma 3],
we omit it.

Lemma 2.1. Let f be a left Jordan τ -centralizer of an algebra A. Then
(1) f(xy + yx) = f(x)τ(y) + f(y)τ(x) for all x, y ∈ A,
(2) f(xyx) = f(x)τ(y)τ(x) for all x, y ∈ A,
(3) f(xyz + zyx) = f(x)τ(y)τ(z) + f(z)τ(y)τ(x) for all x, y ∈ A,
(4) D(x, y) = −D(y, x), where D(x, y) = f(xy)− f(x)τ(y) for all x, y ∈ A.

Lemma 2.2. Each left Jordan τ -centralizer f of a unital algebra A is a left
τ -centralizer.

Proof. Let I be the identity in A. Since τ is an endomorphism of A, it follows
that τ(I) = I. Let D(x, y) = f(xy)− f(x)τ(y) for any x, y ∈ A. So D(x, I) =
f(xI)− f(x)τ(I) = 0 for all x ∈ A. By Lemma 2.1(4), we have that D(I, x) =
−D(x, I) = 0 for all x ∈ A. Thus

(3) f(x) = f(Ix) = f(I)τ(x)

for all x ∈ A. ¤
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In what follows, we suppose that A is a unital subalgebra of B(X) such that
A′ ∩A = CI, where I is the identity in A, and τ is an epimorphism of A. And
we denote by Z = A′ ∩ A = CI the center of A.

Lemma 2.3. Let a be a fixed element in A. If aτ(x)−τ(x)a ∈ Z for all x ∈ A,
then a ∈ Z.

Proof. Since aτ(x)− τ(x)a ∈ CI, by [4, Question 182], it follows that aτ(x)−
τ(x)a = 0. Since τ is surjective, we have that a ∈ Z. ¤
Lemma 2.4. Let a be a fixed element in A, and f(x) = aτ(x)+ τ(x)a for any
x ∈ A. If f is a Jordan τ -centralizer of A, then a ∈ Z.

Proof. Since f is a Jordan τ -centralizer of A, it follows that f(xy + yx) =
f(x)τ(y) + τ(y)f(x) for all x, y ∈ A. Hence

aτ(xy + yx) + τ(xy + yx)a = (aτ(x) + τ(x)a)τ(y) + τ(y)(aτ(x) + τ(x)a),
aτ(y)τ(x) + τ(x)τ(y)a = τ(x)aτ(y) + τ(y)aτ(x),

τ(x)(aτ(y)− τ(y)a) = (aτ(y)− τ(y)a)τ(x)

for all x, y ∈ A. Since τ is surjective, we have that aτ(y) − τ(y)a ∈ Z. Hence
a ∈ Z by Lemma 2.3. ¤
Lemma 2.5. Every Jordan τ -centralizer f of A maps Z into Z.

Proof. For any c ∈ Z, let a = f(c). Since f is a Jordan τ -centralizer of A, we
have that

2f(cx) = f(cx + xc) = f(c)τ(x) + τ(x)f(c) = aτ(x) + τ(x)a

for all x ∈ A. Let g(x) = 2f(cx). Then

g(xy + yx) = 2f(c(xy + yx)) = 2f(cxy + ycx)
= 2(f(cx)τ(y) + τ(y)f(cx)) = g(x)τ(y) + τ(y)g(x),

g(xy + yx) = 2f(c(xy + yx)) = 2f(xcy + cyx)
= 2(f(cy)τ(x) + τ(x)f(cy)) = g(y)τ(x) + τ(x)g(y)

for any x, y ∈ A. Thus, we have that g is a Jordan τ -centralizer of A. By
Lemma 2.4, we have a = f(c) ∈ Z for all c ∈ Z. ¤
Theorem 2.6. Each Jordan τ -centralizer f of A is τ -centralizer.

Proof. By Lemma 2.5, we have that

2f(x) = f(xI + Ix) = f(I)τ(x) + τ(x)f(I) = 2f(I)τ(x) = 2τ(x)f(I)

for all x ∈ A. Thus
f(x) = f(I)τ(x) = τ(x)f(I)

for all x ∈ A. ¤
Corollary 2.7. Let L be a nest on X and let τ be an epimorphism of algL.
Then each Jordan τ -centralizer of algL is τ -centralizer.
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Proof. Since L is a nest on X, we have that (algL)′ = CI. By Theorem 2.6,
we conclude the proof. ¤
Definition 2.8. Let L be a subspace lattice on X and L ∈ L. L is said to be
a comparable element of L if for any M ∈ L, L ⊆ M or L ⊃ M .

Lemma 2.9 ([6, Proposition 2.9]). Suppose that L is a subspace lattice on X
with a nontrivial comparable element M . If there is a subspace N of X such
that X = M ⊕N , then (algL)′ = CI.

By Theorem 2.6 and Lemma 2.9, we can show the following result.

Corollary 2.10. Let L be a subspace lattice on X with a nontrivial comparable
element M . If there is a subspace N of X such that X = M ⊕ N and τ is a
surjective endomorphism of algL, then each Jordan τ -centralizer of algL is a
τ -centralizer.

Remark 2.11. Let L = {(0),K, L,M,X} be a pentagonal lattice on X. Then
(algL)′ is trivial. Hence, by Theorem 2.6, we have that each Jordan τ -centralizer
of algL is τ -centralizer.

In the following, we give a result of an algebra A such that the center of A
6= CI.

Lemma 2.12. Suppose that L is a CDCSL on H and τ is an automorphism
of algL. Then every Jordan τ -centralizer f of algL maps I into the center Z.

Proof. Let e = e2 ∈ algL. Since τ is an automorphism of algL, it follows that
P = τ−1(e) such that P = P 2 ∈ algL. Since f is a Jordan τ -centralizer, it
follows that

2f(P ) = f(PI + IP ) = f(I)τ(P ) + τ(P )f(I),(4)
2f(P ) = f(P 2 + P 2) = f(P )τ(P ) + τ(P )f(P ).(5)

Thus

τ(P )f(P )τ(P ) = τ(P )f(I)τ(P ),(6)
f(P )τ(P ) = τ(P )f(P ) = τ(P )f(P )τ(P ).(7)

By (4), (5), (6), (7), we have that

f(I)τ(P ) = 2f(P )τ(P )− τ(P )f(I)τ(P ) = τ(P )f(P )τ(P ),
τ(P )f(I) = 2τ(P )f(P )− τ(P )f(I)τ(P ) = τ(P )f(P )τ(P ).

It follows that f(I)τ(P ) = τ(P )f(I). Thus f(I)e = ef(I) for any e = e2 ∈
algL. By [3, Lemma 2.3], for any x⊗ y ∈ algL, x⊗ y ∈ span{e ∈ algL, e = e2}.
We have that

f(I)(x⊗ y) = (x⊗ y)f(I).
Let R1(algL) be the algebra generated by all of rank one operators of algL.
By [5, Theorem 3],

R1(algL)
SOT

= algL.
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It follows that f(I)T = Tf(I) for any T in algL. So f(I) ∈ Z. ¤

Theorem 2.13. If L is a CDCSL on H and τ is an automorphism of algL,
then each Jordan τ -centralizer of algL is τ -centralizer.

Proof. Let f be a Jordan τ -centralizer of algL. We have that

2f(x) = f(Ix + xI) = f(I)τ(x) + τ(x)f(I).

By Lemma 2.12, f(I) ∈ Z, it follows that f(I)τ(x) = τ(x)f(I). Thus f(x) =
f(I)τ(x) = τ(x)f(I). ¤

3. Local τ -centralizer

In this section, we suppose that R is a commutative ring with identity, A is
an algebra with identity over R, and τ is an endomorphism of A.

Proposition 3.1. Suppose ϕ : A → A is a linear mapping and τ : A → A is
an endomorphism such that for any e = e2 ∈ A, ϕ(e) ∈ Aτ(e) (respectively,
ϕ(e) ∈ τ(e)A). Then ϕ(a) = ϕ(I)τ(a) (respectively, ϕ(a) = τ(a)ϕ(I)) for any
a in the linear span of all idempotents in A.

Proof. Suppose that e = e2 ∈ A. Since I − e = (I − e)2 ∈ A, it follows that
there are c, d in A such that ϕ(e) = cτ(e) and ϕ(I − e) = dτ(I − e). Hence
ϕ(I) = ϕ(e) + ϕ(I − e) = cτ(e) + dτ(I − e). Multiplying by τ(e), we have that
ϕ(I)τ(e) = cτ(e)τ(e) + dτ(I − e)τ(e) = cτ(e2) + dτ((I − e)e) = cτ(e) = ϕ(e).
Thus ϕ(a) = ϕ(I)τ(a) for any a in span{e ∈ A, e = e2}.

The proof of the other case is similar. ¤

Proposition 3.2. Suppose that ϕ : A → A is a linear mapping and τ : A → A
is an endomorphism such that for any e = e2 ∈ A, ϕ(Ae) ⊆ Aτ(e) (respectively,
ϕ(eA) ⊆ τ(e)A). Then ϕ(a) = ϕ(I)τ(a) (respectively, ϕ(a) = τ(a)ϕ(I)) for
any a in the algebra generated by all idempotents in A.

Proof. We first show that for any idempotents e1, . . . , en in A,

(8) ϕ(e1 · · · en) = ϕ(I)τ(e1 · · · en).

If n = 1, by Proposition 3.1, ϕ(e1) = ϕ(I)τ(e1).
Suppose that if n = k, (8) is true. For n = k + 1, by assumption, there are

c, d in A such that

ϕ(e1 · · · ekek+1) = cτ(ek+1), ϕ(e1 · · · ek(I − ek+1)) = dτ(I − ek+1).

Hence
ϕ(e1 · · · ek) = cτ(ek+1) + dτ(I − ek+1).

Multiplying by τ(ek+1), we have that

ϕ(e1 · · · ek)τ(ek+1) = cτ(ek+1) = ϕ(e1 · · · ek+1),

and therefore

ϕ(e1 · · · ek+1)=ϕ(e1 · · · ek)τ(ek+1)=ϕ(I)τ(e1 · · · ek)τ(ek+1)=ϕ(I)τ(e1 · · · ek+1).
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Thus ϕ(a) = ϕ(I)τ(a) for any a in the algebra generated by all idempotents in
A. ¤

We call a left (right) ideal T of A a separating left (right) set, if for any a
in A, aT = {0} (T a = {0}) implies a = 0. If T is both a separating left set a
separating right set then we call it a separating set.

Proposition 3.3. Suppose A has a left (right) ideal T that is contained in the
algebra generated by all idempotents in A. If ϕ : A → A is a linear mapping
and τ : A → A is an endomorphism of A such that τ(T ) is a separating left
(right) set of A and ϕ(Ae) ⊆ Aτ(e) (respectively, ϕ(eA) ⊆ τ(e)A) for any
e = e2 ∈ A. Then ϕ(a) = ϕ(I)τ(a) (respectively, ϕ(a) = τ(a)ϕ(I)) for any
a ∈ A.

Proof. We only prove the case that T is a left ideal and τ(T ) is a separating
left set of A, the other case is similar.

We first show that for any idempotents e1 · · · en in A, a in A,

(9) ϕ(a)τ(e1 · · · en) = ϕ(ae1 · · · en).

If n = 1, since ϕ(Ae1) ⊆ Aτ(e1), ϕ(A(I − e1)) ⊆ Aτ(I − e1), we know that
there are c1 and d1 in A such that ϕ(ae1) = c1τ(e1), ϕ(a(I−e1)) = d1τ(I−e1).
So

ϕ(a) = ϕ(ae1) + ϕ(a(I − e1)) = c1τ(e1) + d1τ(I − e1).

Thus ϕ(a)τ(e1) = c1τ(e1) = ϕ(ae1).
Suppose that if n = k, (9) is true. For n = k + 1, by assumption, there are

ck+1, dk+1 in A such that

ϕ(ae1 · · · ekek+1) = ck+1τ(ek+1), ϕ(ae1 · · · ek(I − ek+1)) = dk+1τ(ek+1),

and therefore

ϕ(ae1 · · · ek) = ϕ(ae1 · · · ekek+1) + ϕ(ae1 · · · ek(I − ek+1))
= ck+1τ(ek+1) + dk+1τ(I − ek+1).

It follows that

ϕ(ae1 · · · ek)τ(ek+1) = ck+1τ(ek+1) = ϕ(ae1 · · · ek+1).

Thus
ϕ(ae1 · · · ek+1) = ϕ(ae1 · · · ek)τ(ek+1) = ϕ(a)τ(e1 · · · ek+1).

Hence ϕ(at) = ϕ(a)τ(t), where t in the algebra generated by idempotents in
A. In particular, ϕ(at) = ϕ(a)τ(t) for any a in A, t in T . Since T is a left
ideal, it follows that

ϕ(at) = ϕ(I)τ(at) = ϕ(I)τ(a)τ(t).

Thus (ϕ(a) − ϕ(I)τ(a))τ(t) = 0. Since τ(T ) is a separating left set, it follows
that ϕ(a) = ϕ(I)τ(a) for any a ∈ A. ¤
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Corollary 3.4. Suppose that A has a separating left (right) set T that is
contained in the algebra generated by all idempotents in A. If ϕ : A → A is
a linear mapping and τ : A → A is an automorphism such that for any e =
e2 ∈ A, ϕ(Ae) ⊆ Aτ(e) (respectively, ϕ(eA) ⊆ τ(e)A), then ϕ(a) = ϕ(I)τ(a)
(respectively, ϕ(a) = τ(a)ϕ(I)) for any a ∈ A.

Corollary 3.5. Suppose that a subspace lattice L satisfies one of the following
conditions:

(1) L is a J -subspace lattice on a Banach space X,
(2) L is CDCSL on a separable Hilbert space H,
(3) L satisfies 0+ 6= {0}, X− 6= X,

and τ is an automorphism of algL.
If ϕ : algL → algL is a local τ -centralizer, then ϕ is a τ -centralizer.

Proof. Case 1. L satisfies Condition (1). Let I = span{T : T ∈ algL, rank T =
1}. Then I is an ideal of algL. By [3, Lemma 2.10], I is contained in the linear
span of the idempotents in algL. By [3, Lemma 2.11], I is a separating set of
algL.

Case 2. L satisfies Condition (2). Let I = span{T : T ∈ algL, rank T = 1}.
Then I is an ideal of algL. By [3, Lemma 2.3], I is contained in the linear
span of the idempotents in algL. It follows from [5, Theorem 3] that I is a
separating set of algL.

Case 3. L satisfies Condition (3). Let I = span{x⊗ f0, x0⊗ f : x ∈ X, f0 ∈
(X−)⊥, x0 ∈ 0+, f ∈ X∗}. Then I is an ideal of algL and I is a separating set
of algL. For any x ∈ X, 0 6= f0 ∈ (X−)⊥, then x ⊗ f0 ∈ algL. If f0(x) 6= 0,
then 1

f0(x)x ⊗ f0 is an idempotent in I. If f0(x) = 0, choose x1 ∈ X such
that f0(x1) = 1, we have that x⊗ f0 = 1

2 (x1 + x)⊗ f0 − 1
2 (x1 − x)⊗ f0, both

(x1 +x)⊗f0 and (x1−x)⊗f0 are idempotents. The case of x0⊗f is similarly.
Thus I is contained in the algebra generated by the idempotents in algL.

Thus, by Cases 1, 2 and 3, if L satisfies one of above conditions, algL has an
ideal I which is contained in a subalgebra of algL generated by its idempotents
and I separates algL.

Since ϕ is a local τ -centralizer, we have that for each x in algL, there is
a τ -centralizer ϕx such that ϕ(x) = ϕx(x). It follows that for any e = e2 ∈
algL, a ∈ algL,

ϕ(ae) = ϕae(ae) = ϕae(a)τ(e) ∈ (algL)τ(e).

By Corollary 3.4, ϕ(a) = ϕ(I)τ(a) for any a ∈ algL. Thus ϕ is a left τ -
centralizer. Similarly, ϕ is also a right τ -centralizer. Hence ϕ is a τ -centralizer.

¤

4. Generalized derivations associate with Hochschild 2-cocycles

In this section, we suppose that A is a unital algebra and M is a unital
A-bimodule.
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Motivated by Nakajima [7], we introduce a new type of local generalized
derivation. A map (δ, α) is called a local generalized derivation if for any x ∈ A,
there is a generalized derivation (δx, α) such that δ(x) = δx(x). If α = 0, then
δ is a local derivation.

Lemma 4.1. Let δ be a linear mapping from A into M and α : A×A →M
be a Hochschild 2-cocycle bilinear mapping. Then the following relations are
equivalent

(i) P⊥δ(PAQ)Q⊥ = P⊥α(PA, Q)Q⊥,
(ii) δ(PAQ) = δ(PA)Q+Pδ(AQ)−Pδ(A)Q+α(PA,Q)−Pα(A,Q), where

P = P 2, Q = Q2, A ∈ A.

Proof. It is obvious that (ii) implies (i).
Suppose that (i) is true. Let h(x, y) = δ(xy)− α(x, y). Then

P⊥h(PA,Q)Q⊥ = 0,

Ph(A,Q)Q⊥ = Ph(PA, Q)Q⊥ = (I − P⊥)h(PA, Q)Q⊥ = h(PA, Q)Q⊥.

Therefore, we have that

h(PA, Q)− Ph(A, Q) = (h(PA, Q)− Ph(A,Q))Q

= h(PA, I)Q− h(PA,Q⊥)Q− Ph(A,Q)Q

= h(PA, I)Q− Ph(A,Q⊥)Q− Ph(A,Q)Q
= h(PA, I)Q− Ph(A, I)Q.

Then

δ(PAQ)− α(PA,Q)− Pδ(AQ) + Pα(A,Q)
= δ(PA)Q− α(PA, I)Q− Pδ(A)Q + Pα(A, I)Q.

Thus

δ(PAQ) = Pδ(AQ) + δ(PA)Q− Pδ(A)Q + α(PA, Q)− Pα(A,Q)
−α(PA, I)Q + Pα(A, I)Q.

Since α is Hochschild 2-cocycle, we have that

Pα(A, I)− α(PA, I) + α(P, A)− α(P, A) = 0.

Hence

δ(PAQ) = Pδ(AQ) + δ(PA)Q− Pδ(A)Q + α(PA, Q)− Pα(A, Q). ¤

Let δ be a linear mapping from A into M and α : A × A → M be a
Hochschild 2-cocycle bilinear mapping. We say that (δ, α) satisfies the condition
(∗) if

δ(PAQ) = Pδ(AQ) + δ(PA)Q− Pδ(A)Q + α(PA,Q)− Pα(A,Q)

and δ(I) = −α(I, I) hold for each A ∈ A and any idempotents P, Q in A.
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Lemma 4.2. Suppose that δ is a linear mapping from A into M and α :
A×A →M is a Hochschild 2-cocycle bilinear mapping satisfying the condition
(∗). Then

δ(P1 · · ·PnAQ1 · · ·Qm) = δ(P1 · · ·PnA)Q1 · · ·Qm + P1 · · ·Pnδ(AQ1 · · ·Qm)

− P1 · · ·Pnδ(A)Q1 · · ·Qm + α(P1 · · ·PnA, Q1 · · ·Qm)

− P1 · · ·Pnα(A,Q1 · · ·Qm)(10)

for any idempotents P1, . . . , Pn, Q1, . . . , Qm in A and any A in A.

Proof. We first show that for any positive integer n,

δ(P1 · · ·PnAQ) = δ(P1 · · ·PnA)Q + P1 · · ·Pnδ(AQ)− P1 · · ·Pnδ(A)Q
+α(P1 · · ·PnA,Q)− P1 · · ·Pnα(A,Q).(11)

If n = 1, by the condition (∗), (11) is obvious.
Suppose that if n = k, (11) is true. For n = k + 1, by the condition (∗), it

follows

δ(P1 · · ·Pk+1AQ)
= δ(P1 · · ·Pk+1A)Q + P1δ(P2 · · ·Pk+1AQ)− P1δ(P2 · · ·Pk+1A)Q

+α(P1 · · ·Pk+1A,Q)− P1α(P2 · · ·Pk+1A,Q)
= δ(P1 · · ·Pk+1A)Q + P1(P2 · · ·Pk+1δ(AQ)− P2 · · ·Pk+1δ(A)Q

−P2 · · ·Pk+1α(A,Q)) + α(P1 · · ·Pk+1A,Q)
= δ(P1 · · ·Pk+1A)Q + P1 · · ·Pk+1δ(AQ)− P1 · · ·Pk+1δ(A)Q

−P1 · · ·Pk+1α(A,Q) + α(P1 · · ·Pk+1A,Q).

Now we show that (10) is true.
If m = 1, by (11), we have that (10) is true.
Suppose that if m = k, (10) is true. For m = k + 1, by the condition (∗)

and (11), we have

δ(P1 · · ·PnAQ1 · · ·Qk+1)
= δ(P1 · · ·PnAQ1 · · ·Qk)Qk+1 + P1 · · ·Pnδ(AQ1 · · ·Qk+1)

−P1 · · ·Pnδ(AQ1 · · ·Qk)Qk+1 + α(P1 · · ·PnAQ1 · · ·Qk, Qk+1)
−P1 · · ·Pnα(AQ1 · · ·Qk, Qk + 1)

= δ(P1 · · ·PnA)Q1 · · ·Qk+1 + P1 · · ·Pnδ(AQ1 · · ·Qk+1)
−P1 · · ·Pnδ(A)Q1 · · ·Qk+1 + α(P1 · · ·PnA,Q1 · · ·Qk)Qk+1

+α(P1 · · ·PnAQ1 · · ·Qk, Qk+1)− P1 · · ·Pn(α(AQ1 · · ·Qk, Qk+1)
+α(A,Q1 · · ·Qk)Qk+1)

= δ(P1 · · ·PnA)Q1 · · ·Qk+1 + P1 · · ·Pnδ(AQ1 · · ·Qk+1)
−P1 · · ·Pnδ(A)Q1 · · ·Qk+1 + P1 · · ·PnAα(Q1 · · ·Qk, Qk+1)
+α(P1 · · ·PnA,Q1 · · ·Qk+1)− P1 · · ·Pn(Aα(Q1 · · ·Qk, Qk+1)
+α(A,Q1 · · ·Qk+1))
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= δ(P1 · · ·PnA)Q1 · · ·Qk+1 + P1 · · ·Pnδ(AQ1 · · ·Qk+1)
−P1 · · ·Pnδ(A)Q1 · · ·Qk+1 + α(P1 · · ·PnA,Q1 · · ·Qk+1)
−P1 · · ·Pnα(A,Q1 · · ·Qk+1). ¤

Let I be an ideal of A. We say that I is a separating set of M if for any
m,n ∈M, mI = {0} implies m = 0 and In = {0} implies n = 0.

Theorem 4.3. Let I be a separating set of M. Suppose that I is contained in
the algebra generated by the idempotents in A. If δ is a linear mapping from
A into M and α : A × A → M is a Hochschild 2-cocycle bilinear mapping
satisfying the condition (∗), then (δ, α) is a generalized derivation.

Proof. Since I is contained in the algebra generated by the idempotents in A,
by Lemma 4.2, for any S and T in I,

δ(ST ) = δ(S)T + Sδ(T )− Sδ(I)T + α(S, T )− Sα(I, T )
= δ(S)T + Sδ(T ) + α(S, T ) + Sα(I, I)T − Sα(I, T )
= δ(S)T + Sδ(T ) + α(S, T ).

Let A belongs to A. Since I is an ideal of A, it follows that

δ(SAT ) = δ(SA)T + SAδ(T ) + α(SA, T ).

By Lemma 4.2, we have that

δ(SAT ) = δ(SA)T + Sδ(AT )− Sδ(A)T + α(SA, T )− Sα(A, T ).

Thus

(12) Sδ(AT ) = SAδ(T ) + Sδ(A)T + Sα(A, T ).

Since I is a separating set of M, by (12), it follows that

(13) δ(AT ) = Aδ(T ) + δ(A)T + α(A, T ).

For any A,B ∈ A, T ∈ I, by (13),

δ(BAT ) = BAδ(T ) + δ(BA)T + α(BA, T ),
δ(BAT ) = Bδ(AT ) + δ(B)AT + α(B,AT )

= Bδ(A)T + BAδ(T ) + Bα(A, T ) + δ(B)AT + α(B, AT ).

Therefore, we have that

δ(BA)T = Bδ(A)T + δ(B)AT + Bα(A, T )− α(BA, T ) + α(B, AT )
= Bδ(A)T + δ(B)AT + α(B, A)T.

Since I is a separating set of M, it follows that δ(BA) = Bδ(A) + δ(B)A +
α(B,A). ¤

Corollary 4.4. Let I be a separating set of M. Suppose that I is contained
in the algebra generated by idempotents in A. If (δ, α) is a local generalized
derivation from A into M, then (δ, α) is a generalized derivation.
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Proof. Since (δ, α) is a local generalized derivation, we have that

P⊥δ(PAQ)Q⊥ = P⊥δPAQ(PAQ)Q⊥

= P⊥(δPAQ(PA)Q + PAδPAQ(Q) + α(PA, Q))Q⊥

= P⊥α(PA,Q)Q⊥

for each A ∈ A and any idempotents P , Q in A. And

δ(I) = δI(I)I + IδI(I) + α(I, I) = 2δ(I) + α(I, I).

Thus δ(I) = −α(I, I). By Lemma 4.1, δ satisfies the condition (∗). By Theo-
rem 4.3, (δ, α) is a generalized derivation. ¤

Let A be an ultraweakly closed subalgebra of B(H). The Banach spaceM is
said to be a dual normal Banach A-bimodule if M is a Banach A-bimodule, M
is a dual space, and for any m ∈ M, the maps A 3 a → am and A 3 a → ma
are ultraweak to weak* continuous.

Corollary 4.5. Let L be a CDCSL on a complex separable Hilbert space H.
If δ is a linear mapping from algL into a dual normal unital Banach algL-
bimodule M and α : A × A → M is a Hochschild 2-cocycle bilinear mapping
satisfying condition (∗), then (δ, α) is a generalized derivation.

Proof. Let I = span{T : T ∈ algL, rankT = 1}. Then I is an ideal of algL. By
[3, Lemma 2.3], I is contained in the linear span of the idempotents in algL.
By [5, Theorem 3], I is a separating set of M. By Theorem 4.3, (δ, α) is a
generalized derivation. ¤

Corollary 4.6. Let L be a CDCSL on a complex separable Hilbert space H.
If (δ, α) is a local generalized derivation from algL into a dual normal unital
Banach algL-bimodule M, then (δ, α) is a generalized derivation.
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