• Title/Summary/Keyword: Tartrate-resistant acid phosphatase staining

Search Result 38, Processing Time 0.024 seconds

Tooth Movement in Demineralized Area by Etchant in Rabbits

  • Choi, Bohm;Kim, Tae-Gun;Han, Seung-Hee;Park, Yoon-Hee;Lee, Won
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Purpose: Among the facilitation of tooth movement in adult orthodontic treatment methods, surgical approaches are gaining popularity but complications following mechanical bone reduction are a problem. In this study, tooth movement was observed after alveolar bone was chemically demineralized to verify whether tooth movement had been facilitated. Materials and Methods: Twelve rabbits were used. In the experimental group, the alveolar bone of the left first molar area was exposed and demineralized. Thirty seven percents phosphoric acid was applied for 5 minutes for demineralization. The opposite first molar area was used as control. Two teeth were pulled with 200 g force and 4 rabbits each were sacrificed at 3, 7, and 14 days after the force was applied. Histologic examination was done with hematoxylin and eosin and tartrate-resistant acid phosphatase staining. Result: The histologic examination results revealed more bone resorption in the demineralized area. As time passed, the number of osteoclasts increased in the compressed area. The amount of tooth movement was larger in the experimental group compared to the control group but the difference was not statistically significant. Conclusion: The demineralization with etchant resulted in limited bone resorption, more tooth movement and less damage of the cementum after applied orthodontic force.

The Changes of Stifle Joint Fluid with Cranial Cruciate Ligament Rupture in Dogs (개에 있어서 전방십자인대 단열시 슬관절액의 변화)

  • Nam-soo, Kim
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • To determine whether localization of tartrate-resistant acid phosphatase (TRAP) and cathepsin K was associated with rupture of the cranial cruciate ligament (CCL) in dogs. Tissue specimens were obtained from 30 dogs with CCL rupture during surgical treatment, 8 aged normal dogs, and 9 young normal dogs that were necropsied for reasons unrelated to this study and unrelated to musculoskeletal disease. The cranial cruciate ligament was examined histologically. $TRAP^+$ cells and cathepsin $K^+$ cells were identified by histochemical staining and immunohistochemical staining respectively. TRAP and cathepsin $K^+$ were co-localized within the same cells principally located within the epiligamentous region and to a lesser extent in the core region of ruptured CCL. Localization of $TRAP^+$ cells (P < 0.05) and cathepsin $K^+$ cells (P =0.05) within CCL tissue was significantly increased in dogs with CCL rupture, compared with aged-normal dogs, and young normal dogs (P < 0.05 - TRAP, P < 0.001 - cathepsin K). Localization of $TRAP^+$ cells and cathepsin $K^+$ cells within the CCL tissue of aged-normal dogs was also increased compared with young normal dogs (P < 0.05). Small numbers of $TRAP^+$ cells and cathepsin $K^+$ cells were seen in the intact ligaments of aged-normal dogs, which were associated with ligament fasicles in which there was chondroid transformation of ligament fibroblasts and disruption of the organized hierarchical structure of the extracellular matrix. $TRAP^+$ cells and cathepsin $K^+$ cells were not seen in CCL tissue from young-normal dogs. Localization of the proteinases $TRAP^+$ and cathepsin $K^+$ in CCL tissue was significantly associated with CCL rupture. Small numbers of proteinase positive cells were also localized in the CCL of agednormal dogs without CCL rupture, but were not detected in CCL from young-normal dogs. Taken together, these findings suggest that the cell signaling pathways that regulate expression of these proteinases in CCL tissue may form part of the mechanism that leads to upregulation of collagenolytic ligament remodeling and progressive structural failure of the CCL over time.

Effect of Ssangwha-tang Fermented by Lactobacillus fermentum on Osteoclast Differentiation and Osteoporosis of Ovariectomized Rats (Lactobacillus fermentum으로 발효한 쌍화탕의 파골 세포 분화와 난소 적출한 랫트의 골다공증에 미치는 영향)

  • Shim, Ki-Shuk;Lee, Ji-Hye;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.1
    • /
    • pp.149-155
    • /
    • 2010
  • Objective : Ssangwha-tang is a traditional medicine formula widely prescribed for a decrease of fatigue after an illness in Korea. The aim of this study is to investigate the effect of Ssangwha-tang fermented by Lactobacillus fermentum (SF) on osteoclast differentiation in vitro and on bone metabolism of an ovariectomized rat in vivo. Methods : Tartrate-resistant acid phosphatase activity and staining were applied to evaluate the formation of osteoclasts. Ovariectomized rats were orally administrated with SF (30 ml/kg/day) for 12 weeks. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, phosphate, calcium levels were determined. Effect of SF on bone loss were studied by histological analysis and the measurement of bone mineral density. Results : SF significantly inhibited tartrate-resistant acid phosphatase activity and formation of osteoclasts in RAW264.7 cells stimulated by receptor activator for nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL). In addition, SF significantly decreased the level of triglyceride and increased the level of low-density lipoprotein. Moreover, the decrease of trabeculae of the femur was partially prevented in ovariectomized rats administrated with SF. Conclusions : SF treatment could prevent ovariectomy induced bone loss and its effects could be medicated by the inhibition of osteoclastogenesis.

Osteoclast Differentiation of Polygoni Cuspidati Radix Extracts Effects and Mechanism of Inhibition Studies (호장근(虎杖根)의 파골세포 분화 억제 효과와 기전 연구)

  • Jang, Hee-Jae;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Objectives: This study was conducted to evaluate the inhibitory effect of polygoni cuspidati radix (PCR) extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of PCR extract in BMMs stimulated with RANKL. Tartrate resistant acid phosphatase (TRAP) staining, TRAP activity and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. actin ring formation were analysed to observe the effect of PCR extract. Results: PCR decreased the number of TRAP positive cells and TRAP activities in BMMs stimulated with RANKL and M-CSF. PCR restrained the formation of actin ring. PCR down regulated the induction of NFATc1, c-Fos, TRAP and OSCAR by RANKL. PCR inhibited NF-${\kappa}B$ activity by inducing degradation of $I{\kappa}B{\alpha}$. Conclusions: We suggest that PCR Extracts can be an effective therapeutic agent on osteoclast differentiation caused by diseases such as osteoporosis.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Extracts of Sorbus commixta and Geranium thunbergii inhibit Osteoclastogenesis and stimulate Chondrogenesis (마가목 및 현지초 추출물의 골손실 및 연골손상 억제효과)

  • Moon, Eun-Jung;Youn, You-Suk;Choi, Bo-Yun;Jeong, Hyun-Uk;Park, Ji-Ho;Oh, Myung-Sook;Soh, Yun-Jo;Kim, Sun-Yeou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3358-3365
    • /
    • 2010
  • This study was carried out to investigate the effect of Sorbus commixta (SC), Geranium thunbergii (GT) and their mixture (SC:GT=1:1, MIX) on inhibition of bone loss and chondral defect. To examine their activities, we measured the alkaline phosphatase (ALP) activity in human osteoblast-like MG-63 cells and performed tartrate-resistant acid phosphate (TRAP) staining in osteoclast differentiated from Raw264.7 cells. To investigate the influence on chondrocyte differentiation, we performed alcian-blue staining in chondrocyte differentiated from ATDC5 cells. All of SC, GT and MIX did not increase ALP activity in MG-63 cells. However, SC and mixture (SC:GT=1:1, MIX) significantly inhibited osteoclastic differentiation. And they also induced chondrocyte differentiation. These results suggest that SC and GT may have a potential for the treatment of bone loss and chondral defect by suppression of osteoclast differentiation and stimulation of chondrocyte differentiation. Therefore, clarification of their mechanisms and active components will be needed.

The effect of taurine and alendronate on the osteoclast differentiated by the sonicated extracts of Porphyromonas Gingivalis in vitro

  • Kim, Hyung-Su;Lee, Seung-Jong;Lee, Chan-Young;Kum, Kee-Yeon
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.566.2-566
    • /
    • 2001
  • The objective of this study was to investigate the ability of alendronate and taurine in inhibiting in vitro osteoclast differentiation induced by bacteria. Whole cell sonicates of P. gingivalis were used as an osteoclast-stimulating factor in a mouse coculture system and differentiated osteoclasts were confirmed by tartrate-resistant acid phosphatase (TRAP) staining. Alendronate at the concentrations of 10-7, 10-6, and 10-5 M, and taurine at the concentrations of 4mM, 8mM, and 12mM were used.(omitted)

  • PDF

Effect of Pyrroloquinoline Quinone on Osteoclast Generation and Activity (Pyrroloquinoline quinone이 파골세포의 생성 및 활성에 미치는 영향)

  • Ko, Seon-Yle;Han, Dong-Ho;Kim, Jung-Keun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.329-336
    • /
    • 2005
  • We examined the effect of PQQ, as a scavenger of superoxide, on osteoclast-like cell formation and on mature osteoclast function. To determine whether PQQ scavenges the superoxide, nitroblue tetrazolium (NBT) staining, which is a method to detect superoxide, was performed on HD-11 cells which are a chick myelomonocytic cell line having tartrate-resistant acid phosphatase (TRAP) activity in response to 1,25-dihydroxyvitamin $D_3\;[1,25(OH)_2D_3]$. Histochemical study of TRAP was also performed on HD-11 cells. PQQ inhibited the TRAP-positive multinucleated cell formation of chicken bone marrow cells was also examined. The addition of 20 ${\mu}M$ PQQ inhibited the formation of TRAP-positive multinucleated cell. When chicken osteoclasts were cultured on dentin slices, treatment of 20 ${\mu}M$ PQQ resulted in a significant decrease in dentin resorption by osteoclasts in terms of total resorption area and number of resorption pits. The present data suggest that PQQ, possibly as a scavenger of superoxide ion, inhibits the osteoclastic differentiation and bone resorption.

Experimental Studys of GMJST on Bone Growth Factors;Proliferation of Osteoblast and Supression of Osteoclast (가미장신탕(加味長身湯)이 뼈성장 관련 인자에 미치는 영향에 대한 실험적 연구)

  • Han, Deok-Hee;An, Joung-Jo;Jo, Hyun-Kyung;Yoo, Ho-Rhyong;Kim, Yoon-Sik;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.802-809
    • /
    • 2008
  • Gamijangsing-tang (GMJST) has been used for treatment of bone formation in traditional korean medicine. The purpose of this study is to examine effects of GMJST on bone metabolism. The effects on the osteoblasts were determined by measuring (1) cell proliferation, (2) alkaline phosphatase (ALP) activity, (3) osteoprotegerin (OPG) secretion. (4) The morphologic changes of cells were observed by light microscopy and electron microscopy. Mineralization of calcium was determined by quantitative alizarin red-S assay and mineralization of phosphate was observed by von kossa staining. The morphologic changes of mineralization on the cells were observed by transmission electron microscopy (TEM). The effects on the osteoclast were investigated by tartrate-resistant acid phosphatase (TRAP) staining. Following results were obtained: Celluar activity of osteoblastic cells (MG-63) was significantly increased in 10-5 of dilution of GMJST. ALP and OPG activity of osteoblastic cells were increased in GMJST than normal MG-63 cell. Mineralization of osteoblastic cells were increased in GMJST than normal MG-63 cell. The activity of osteoclast cells (RAW 264.7) was significantly decreased in GMJST than normal MG-63 cell. From the results, GMJST stimulated the proliferation and mineralization of bone-forming osteoblast and inhibited by bone- lysis osteoclast.

Phagocytic osteoclasts in the alveolar bone of diabetic rats with periodontitis

  • Bak, Eun-Jung;Kim, Ae Ri;Kim, Ji-Hye;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.92-98
    • /
    • 2020
  • Periodontitis is a bacteria-induced inflammatory disease associated with alveolar bone loss. Osteoclast is a macrophage-lineage cell that exhibits phagocytic activity; however, osteoclast phagocytic activity has not been demonstrated under pathological conditions. Diabetes is a pathological condition that exacerbates alveolar bone loss via periodontitis; therefore, we examined phagocytic osteoclasts in diabetic rats that had periodontitis. The rats were divided into the control (C), periodontitis (P), and diabetes with periodontitis (DP) groups. Diabetes and periodontitis were induced by streptozotocin injection and ligature of the mandibular first molars, respectively. On days 3 and 20 after the ligature, the rats were sacrificed, and osteoclasts containing inclusions were quantified by tartrate-resistant acid phosphatase staining. On day 3, there were more osteoclasts containing inclusions in the DP group than in the C group. Among inclusions, osteocyte-like cells and dense bodies were more frequently observed in the DP group than in the C group. Cytoplasm-like structures were elevated more in the DP group than in the C and P groups. However, no differences were observed on day 20. Interestingly, some osteoclasts were in contact with the osteocytes within the exposed lacunae and contained several inclusions within a large vacuole. Thus, the elevation of phagocytic osteoclasts in rats with diabetes and periodontitis provides insight into the role of osteoclast phagocytic activity under pathological conditions.