• Title/Summary/Keyword: Target signal processing

Search Result 341, Processing Time 0.021 seconds

Design of a Tree-Structured Fuzzy Neural Networks for Aircraft Target Recognition (비행체 표적식별을 위한 트리 구조의 퍼지 뉴럴 네트워크 설계)

  • Han, Chang-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1034-1038
    • /
    • 2020
  • In order to effectively process target recognition using radar, accurate signal information for the target is required. However, such a target signal is usually mixed with noise, and this part of the study is continuously carried out. Especially, image processing, target signal processing and target recognition for the target are examples. Since the field of target recognition is important from a military point of view, this paper carried out research on target recognition of aircraft using a tree-structured fuzzy neural networks. Fuzzy neural networks are learned by using reflected signal data for an aircraft to optimize the model, and then test data for the target are used for the optimized model to perform an experiment on target recognition. The effectiveness of the proposed method is verified by the simulation results.

Development of Target Signal Simulator for Multi-Beam Type FMCW Radar (다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발)

  • Lee, Seung-Youn;Choe, Tok-Son;Jung, Young-Hun;Lee, Seok-Jae;Yoon, Joo-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

A Strategy for Integrated Target Recognition and High Quality Compression (목표물 탐지를 고려한 통합 이미지 압축에 관한 연구)

  • 남진우
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.257-260
    • /
    • 2000
  • In modern battlefield situation, radar and infrared sensors may be located on aircraft having limited computational resources available for real-time computer processing. Hence sensor images are transmitted typically to central stations for processing and automatic target recognition/detection. Owing to the limited bandwidth channels that are typically available between the aircraft and processing stations, images are compressed prior to transmission to facilitate rapid transfer. In this paper we examine the problem of compressing sensor data for transmission, given that target recognition is the end goal. Performance result shows that the front-end target recognition system achieves a relatively high level of performance as well as a high compression ratio.

  • PDF

A Study on Signal Processing of Target Discrimination Using RELAX in Millimeter-wave Seeker (밀리미터파 탐색기에서 RELAX 기법을 이용한 표적 식별 신호처리 기법)

  • Jo, Heejin;Kim, Minwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • This paper introduces a signal processing technique for discrimination of missile target. In order to detect and discriminate the target, a seeker radar makes use of chirp waveform and stretch processing to generate high resolution range profiles(HRRPs). RELAX(relaxation) algorithm, which is one of the spectral estimation techniques, was used to find scattering centers of a missile from HRRP. From the information on the distribution of one-dimensional(1-D) scattering centers on a target, we can discriminate the target without noise.

Miniaturization of Signal Processor of Airborne Tracking Radar (항공용 추적 레이더의 신호처리기 소형화 설계)

  • Kim, Doh-Hyun;Lee, Young-Sung;Lee, Hyung-Woo;Kim, Soo-Hong;Kim, Young-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.114-117
    • /
    • 2002
  • The airborne tracking radar is located in front of aircraft or missile and measures and tracks a target motion. The signal processor receives target signals from a receiver using A/D converters, and calculates the target motion, and transfers the data to the aircraft or missile control unit. Since the signal processing system is required to be lightweight and small size as well as high performance to calculate and analyze the received signal, we use high speed DSPs and SMD type components having low power consumption. In this paper, we describe the design concept of signal processing system of the airborne tracking radar.

  • PDF

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Development of Target Signal Simulator for Towed Line Array Sonar (선배열 예인음탐기 표적신호 시뮬레이터 개발)

  • Son, Kweon;Choi, Jae-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.36-43
    • /
    • 2003
  • Multi-target away signal simulator which can simulate the radiated noises of maneuvering targets in a specified ocean range is an essential equipment for the validation of developed towed array sonar system. This simulator should provide realistic multi-channel signals those are required for beamforming on the signal processing unit of towed away system. This paper describes the overall system configuration and signal synthesis techniques for the target radiated noise. And this paper considers why the time delays between target and individual sensors are caused and how to compensate these time delays to individual sensors output. This multi-purpose target simulator could be used for the training of TASS operators.

Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar (FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.

Development and Performance Analysis of Radar Signal Processing for Autonomous Unmanned Ground Vehicle (자율주행 무인차량용 레이더 신호처리부 개발 및 성능 분석)

  • Shin, Seung-Yong;Choi, Jun-Hyeok;Park, Sang-Hyun;Yeom, Dong-Jin;Kim, Jeong-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • In this paper, we present signal processing procedure and carry out performance analysis of FMCW(Frequency Modulation Continuous Wave) radar for Autonomous Unmanned Vehicle(AUV). In order to detect range profile and velocity of the unknown target, we must implement two step FFT(Fast Fourier Transform) procedure. And the DBF(Digital Beam Forming) algorithm has to be performed to obtain the angle information of the unknown target. To verify the performance of manufactured autonomous unmanned ground vehicle FMCW radar, we use the data of the real corner reflecter target.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.