• Title/Summary/Keyword: Target Velocity

Search Result 656, Processing Time 0.031 seconds

The Improvement of Target Motion Analysis(TMA) for Submarine with Data Fusion (정보융합 기법을 활용한 잠수함 표적기동분석 성능향상 연구)

  • Lim, Young-Taek;Ko, Soon-Ju;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • Target Motion Analysis(TMA) means to detect target position, velocity and course for using passive sonar system with bearing-only measurement. In this paper, we apply the TMA algorithm for a submarine with Multi-Sensor Data Fusion(MSDF) and we will decide the best TMA algorithm for a submarine by a series of computer simulation runs.

A Study on the Target Coverage of the ICM (개량고폭탄의 표적제압에 관한 연구)

  • Choe Gwang-Muk;Min Gye-Ryo
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.1
    • /
    • pp.50-70
    • /
    • 1986
  • When the ICM is fired in the artillery weapon, it is necessary to determine rounds of munitions for sufficient damage to targets of different sizes and shapes. This paper analyzes all kinds of delivery errors involved in ICM firing, and then develops the target coverage model appropriate for ICM salvos. This model is evaluated through computer simulation. The expected target coverage is measured according to number of salvos, range and probable error, velocity error, battery arrangement, target size, and shell reliability respectively.

  • PDF

Analysis of Detection Performance of Radar Signal Processor with Relation to Target Doppler Velocity and Clutter Spectrum Characteristics (표적 도플러 속도와 클러터 스펙트럼 특성에 따른 레이더 신호 처리기의 탐지 성능 분석)

  • Yang, Jin-Mo;Shin, Sang-Jin;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2011
  • MTI filter is used to separate target signal from clutter in many radar signal processing. By suppressing clutter before CFAR detection, the detection performance can be improved. As a radar system designed, a design engineer generally takes averaged SNR and CNR into account and does not include the effect of MTI filter's frequency response. In practice, when the signals including clutter are pass through the filter, SNR is widely varying according to target velocity and CNR is also varying according to clutter center frequency and spectrum spreading. In this paper, we have derived the relationship between the MTI filter's frequency response and a target's velocity and a clutter's spectrum characteristics. With the variation of SNR and CNR at the filter output, the detection performance of CFAR has been analyzed by the simulation and has made certain of their influences on the performance.

Forward-Looking GMTI and Estimation of Position and Velocity Based on Millimeter-Wave(W-Band) FMCW SAR (밀리미터파(W 밴드) FMCW SAR 기반 전방의 이동지상표적 탐지 및 위치와 속도 추정)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.459-469
    • /
    • 2017
  • An air-to-ground guidance missile aimed to hit a main battle tank(MBT) should detect a ground moving target and estimate the target position to guide. In this paper, we detect a front ground moving target by using FMCW(Frequency Modulated Continuous Wave) and estimate the position by forward-looking SAR(Synthetic Aperture Radar) via scanning certain front ground section by steering a beam with narrow beamwidth left to right mechanically. Also, by MLE(Maximum Likelihood Estimation), degree of how fast the target approach or recede from the radar can be figured out from the estimated radial velocity of the moving target. Subsequently, we generate a radar image via corrected matched filter from phase history including the radial velocity.

Scale Effects of Warhead on Concrete Penetration (탄두의 콘크리트 관통 시 스케일 영향)

  • Kim, Seokbong;Lee, Changsoo;Yoo, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.238-245
    • /
    • 2017
  • This paper deals with the scale effects of warhead on concrete penetration. We investigated the scale effects using finite element analysis and Young's penetration equation. As the scale of penetration test decreases, the strain rate effects of target increases, and then strength of concrete target increases. This means the residual velocity and penetration depth of warhead decreases as the test model size decreases. Young's penetration equations are transformed with various penetrator mass and scale cases as a function of scale ratio. Penetration distance and residual velocity are not simply changed by the geometric scaling law.

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control (브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발)

  • Youn, Weon-Young;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

The DESI peculiar velocity survey

  • Saulder, Christoph
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.4-43.4
    • /
    • 2021
  • One of the most promising secondary target programmes of DESI is the peculiar velocity survey, which will notably improve the measurements of cosmology parameters in the low-redshift universe. We use the Fundamental plane and Tully-Fisher relation as distance indicators to calculate peculiar velocities for DESI. This required additional observations to obtain spectra with sufficient quality to measure the velocity dispersions in the case of the fundamental plane, and to get off-centre redshift measurements to reconstruct the rotation curve in the case of the Tully-Fisher relation. However, we devised a clever strategy for suitable target galaxies, that takes advantage of the spare fibres of DESI to gather the required additional data without causing conflicts with the main survey programmes. We provide a brief overview of the preliminary results and success rate based on the first measurements obtained during survey validation as well as an outlook on expected improvements in the fσ8 measurements once the survey has been completed.

  • PDF

CORRELATION SEARCH METHOD WITH THIRD-ORDER STATISTICS FOR COMPUTING VELOCITIES FROM MEDICAL IMAGES

  • Kim, D.;Lee, J.H.;Oh, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.9-12
    • /
    • 1991
  • The correlation search method yields velocity information by tracking scatter patterns between medical image frames. The displacement vector between a target region and the best correlated search region indicates the magnitude and direction of the inter-frame motion of that particular region. However, if the noise sources in the target region and the search region are correlated Gaussian, then the cross-correlation technique fails to work well because it estimates the cross-correlation of both signals and noises. In this paper we develop a new correlation search method which seeks the best correlated third-order statistics between a target and the search region to suppress the effect of correlated Gaussian noise sources. Our new method yields better estimations of velocity than the conventional cross-correlation method.

  • PDF

A Study on Numerical Perforation Analysis of Axisymmetric Bullet by the Particle Method (입자법을 이용한 축대칭 탄자의 관통거동 수치해석 연구)

  • Kim, Yong-Seok;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.164-171
    • /
    • 2008
  • A modified generalized particle algorithm, MGPA, was suggested to improve the computational efficiency of standard SPH method in numerical analysis of high speed impact behavior. This method uses a numerical failure mechanism than material failure models to describe the target penetration. MGPA algorithm was more effective to describe the impact phenomena and new boundaries produced during the calculation process were well recognized and treated in the target penetration problem of a bullet. When bullet perforation problems were analyzed by this method, MGPA algorithm calculation gives the stable numerical solution and stress oscillation or particle penetration phenomena were not shown. The error range in ballistic velocity limit is less than $2{\sim}13%$ for various target thickness.