• Title/Summary/Keyword: Target Recognition

Search Result 728, Processing Time 0.026 seconds

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Target Recognition with Intensity-Boundary Features (밝기- 윤곽선 정보 기반의 목표물 인식 기법)

  • 신호철;최해철;이진성;조주현;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.411-414
    • /
    • 2001
  • 목표물 인식(Target Recognition)에 사용되는 대표적인 특징 정보에는 밝기 (Intensity) 정보와 윤곽선(Boundary) 등의 모양(Shape) 정보가 있다. 그러나, 일반적으로 영상에서 바로 추출한 밝기 정보나 윤곽선 정보는 환경 변화에 의한 많은 오차 요인들을 포함하고 있기 때문에, 이들 특징 정보를 개별적으로 인식에 사용하는 것은 높은 인식 성능을 기대하기 어렵다. 따라서, 밝기 정보와 모양 정보를 인식에 함께 사용하는 기법이 요구된다. 본 논문에서는 밝기 정보와 윤곽선 기반의 모양 정보를 합성하여 동시에 인식에 사용하는 3단계 기법을 제안한다. 제안하는 기법에서 밝기 정보 추출에 는 PCA (Principal Component Analysis)기법을 사용하고 , 윤곽선 정보 추출에는 PDM(Point Distribution Model) 에 기반한 영역 분할(Segmentation) 기법과 Algebraic Curve Fitting기법을 사용하였다 추출된 밝기 정보와 윤곽선 정보는 FLD(Fisher Linear Discriminant) 기법을 통해 결합(integration)되어 인식에 사용 된다. 제안한 기법을 적외선 자동차 영상을 인식하는 실험에 적용한 결과, 기존기법에 비해 인식 성능이 개선됨을 확인할 수 있었다.

  • PDF

A Study on Target Recognition Method for Robotic Totalstation assisted by GPS (GPS에 의한 지상측량장비(로봇 토탈스테이션) 타겟유도에 관한 연구)

  • Tcha, Dek-Kie;Lee, In-Su;Kim, Su-Jeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.129-132
    • /
    • 2009
  • Automatic target recognition surveying method is very important technology one-man surveying system. But in the case of loss of prism's position, it have to be re-tracking for searching it, consuming the searching time and complicated in processing. In this study, it is proposed new GPS receiver combination technology for orientation of both. In conclusion, the robotic TS(totalstation) is well assisted by absolute coordinates from single GPS receiver and multi-functional surveying instrument.

  • PDF

Design and Implementation of Hardware for various vision applications (컴퓨터 비전응용을 위한 하드웨어 설계 및 구현)

  • Yang, Keun-Tak;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.156-160
    • /
    • 2011
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for pattern recognition to use in embedded applications. The target Soc consists of LEON2 core, AMBA/APB bus-systems and custom-designed accelerators for Gaussian Pyramid construction, lighting compensation and histogram equalization. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, a pattern recognition application is performed.

Improved Fusion Method of Detection Features in SAR ATR System (SAR 자동표적인식 시스템에서의 탐지특징 결합 방법 개선 방안)

  • Cha, Min-Jun;Kim, Hyung-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.461-469
    • /
    • 2010
  • In this paper, we have proposed an improved fusion method of detection features which can enhance the detection probability under the given false alarm rate in the prescreening stage of SAR ATR(Synthetic Aperture Radar Automatic Target Recognition) system. Since the detection features have the positive correlation, the detection performance can be improved if the joint probability distribution of detection features is considered in the fusion process. The detection region is designed as a simple piecewise linear function which can be represented by few parameters. The parameters for the detection region can be derived by training the sample SAR images to maximize the detection probability with the given false alarm rate. Simulation result shows that the detection performance of the proposed method is improved for all combinations of detection features.

Path Planning of Autonomous Mobile Robot Based on Fuzzy Logic Control (퍼지로직을 이용한 자율이동로봇의 최적경로계획)

  • Park, Jong-Hun;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2420-2422
    • /
    • 2003
  • In this paper, two Fuzzy Logics for path planning of an autonomous mobile robot are proposed. If a target point is given, such problems regarding the velocity and object recognition are closely related with path to which the mobile robot navigates. Therefore, to ensure safety navigation of the mobile robot for two fuzzy logic parts, path planning considering the surrounding environment was performed in this paper. First, feature points for local and global path are determined by utilizing Cell Decomposition off-line computation. Second, the on-line robot using two Fuzzy Logics navigates around path when it tracks the feature points. We demonstrated optimized path planning only for local path using object recognition fuzzy logic corresponds to domestic situation. Furthermore, when navigating, the robot uses fuzzy logic for velocity and target angle. The proposed algorithms for path planning has been implemented and tested with pioneer-dxe mobile robot.

  • PDF

Estimation of Eyewitness Identification Accuracy by Event-Related Potentials (차량 번호판 목격자의 기억 평가를 위한 사건 관련 전위 연구)

  • Ham, Keunsoo;Pyo, Chuyeon;Jang, Taeik;Yoo, Seong Ho
    • The Korean Journal of Legal Medicine
    • /
    • v.39 no.4
    • /
    • pp.115-119
    • /
    • 2015
  • We investigated event-related potentials (ERPs) to estimate the accuracy of eyewitness memories. Participants watched videos of vehicles being driven dangerously, from an anti-impaired driving initiative. The four-letter license plates of the vehicles were the target stimuli. Random numbers were presented while participants attempted to identify the license plate letters, and electroencephalograms were recorded. There was a significant difference in activity 300-500 milliseconds after stimulus onset, between target stimuli and random numbers. This finding contributes to establishing an eyewitness recognition model where different ERP components may reflect more explicit memory that is dissociable from recollection.

Object Recognition and Pose Estimation Based on Deep Learning for Visual Servoing (비주얼 서보잉을 위한 딥러닝 기반 물체 인식 및 자세 추정)

  • Cho, Jaemin;Kang, Sang Seung;Kim, Kye Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.

Using Hierarchical Performance Modeling to Determine Bottleneck in Pattern Recognition in a Radar System

  • Alsheikhy, Ahmed;Almutiry, Muhannad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.292-302
    • /
    • 2022
  • The radar tomographic imaging is based on the Radar Cross-Section "RCS" of the materials of a shape under examination and investigation. The RCS varies as the conductivity and permittivity of a target, where the target has a different material profile than other background objects in a scene. In this research paper, we use Hierarchical Performance Modeling "HPM" and a framework developed earlier to determine/spot bottleneck(s) for pattern recognition of materials using a combination of the Single Layer Perceptron (SLP) technique and tomographic images in radar systems. HPM provides mathematical equations which create Objective Functions "OFs" to find an average performance metric such as throughput or response time. Herein, response time is used as the performance metric and during the estimation of it, bottlenecks are found with the help of OFs. The obtained results indicate that processing images consumes around 90% of the execution time.