• 제목/요약/키워드: Tank filling

검색결과 111건 처리시간 0.023초

한국형발사체 발사대시스템 산화제공급설비 상세설계 (Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex)

  • 서만수;고민호;선정운;서현민;이재준;강선일
    • 한국추진공학회지
    • /
    • 제21권2호
    • /
    • pp.102-110
    • /
    • 2017
  • 발사대시스템의 산화제공급계(Liquid Oxygen Filling System)는 발사체의 추진제(Propellant) 중 연료의 연소를 위한 산화제(Oxidizer)로 사용되는 액체산소(Liquid Oxygen)를 저장하고, 발사체 요구조건에 맞게 공급하는 하는 설비이다. 본 논문에서는 한국형발사체(KSLV-II) 발사대시스템 상세설계(Critical Design, 2015년 8월에서 2016년 4월, 8개월) 동안 수행된 한국형발사체 발사대시스템 추진제 공급설비의 산화제공급계 설계 내용을 주요 설비 구성에 대하여 구조적 관점으로 소개한다.

LNG 저장탱크 종합 열유동 해석프로그램 개발 (Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks)

  • 김호연;최성희;이정환;박영;하종만;주상우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.683-688
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^{3}$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation mdoes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks, Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study performed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

Experimental study on characteristic of sloshing impact load in elastic tank with low and partial filling under rolling coupled pitching

  • Wu, Wenfeng;Zhen, Changwen;Lu, Jinshu;Tu, Jiaoyang;Zhang, Jianwei;Yang, Yubin;Zhu, Kebi;Duan, Junxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.178-183
    • /
    • 2020
  • A series of experiments covering lowest three natural frequencies of rolling coupled pitching were conducted to investigate liquid sloshing with low liquid depth. The test results show that the most violent liquid sloshing in rolling and pitching is located in the vicinity of the first order natural frequency (f1). When the excitation frequency of rolling and pitching is located between 0.98f1 and 1.113f1, roof-bursting phenomenon of liquid appeared, and the maximum impact pressure is at 1.09f1. When the external excitation frequency is at 1.113f1, the number of sloshing shocks decreases sharply. Furthermore, the space distribution of the impact pressure on the left bulkhead and the top bulkhead was analyzed. It is concluded that with low liquid filling, the impact load is greater near the free surface and the top of tank, and the impact position of the side bulkhead increases with the increasing of the frequency near the resonant frequency.

급속 충전에서 탱크 내부의 수소 온도 변화에 관한 이론 연구 (A Theoretical Study on the Hydrogen Temperature Evolution Inside the Tank under Fast Filling Process)

  • 이길초;이길강;허항;최병철;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.608-614
    • /
    • 2023
  • The fast filling process of high-pressure hydrogen has an important impact on the filling efficiency and safety. In this paper, a specific study is carried out on the thermophysical phenomena during the fast filling process. Starting from the gas state equation of hydrogen, the change law of the hydrogen storage temperature is obtained, and then the temperature rise prediction is constructed. The model can clarify the relationship between the filling parameters and the temperature rise during the fast filling process, thereby revealing the flow and heat transfer laws of the fast charging process. To improve the theoretical research basis for the evaluation of vehicle-mounted hydrogen fast charging capacity, temperature prediction and optimization of hydrogenation methods.

LNG 탱크 컨테이너의 내부압력 변화 분석 및 실제 홀딩타임 측정 (Internal Pressure Variation Analysis and Actual Holding Time Test on ISO LNG Tank Container)

  • 류영돈;이진한;조영도;오영삼;차경호
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.1-7
    • /
    • 2013
  • 이 논문에서는 특례기준에 따라 국내에서 최초로 제작하고 검사한 LNG 탱크 컨테이너를 이용하여 육상 및 해상 운송 시연사업을 하고, 탱크 컨테이너를 운송할 때 탱크 컨테이너 내부에 충전된 LNG의 압력변화와 탱크 컨테이너의 실제 압력유지기간을 측정하였다. 탱크 컨테이너 내부의 압력은 충전 직후에는 급속하게 상승하고, 탱크 컨테이너를 이동할 때 급속히 하강하나, 일정시간이 경과한 후에는 기액평형상태 그래프의 온도-압력 변화와 일치함을 확인하였다. 또한, 탱크 컨테이너의 실제 압력유지기간은 특례기준에서 규정한 20일 이상을 만족함을 확인하였다.

고압 충전 시 수소 저장 탱크의 온도 변화 및 충전량에 관한 해석 (An Analysis on the Temperature Changes and the Amount of Charging of Hydrogen in the Hydrogen Storage Tanks During High-Pressure Filling)

  • 이길강;이길초;명노석;박경우;장선준;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.163-171
    • /
    • 2021
  • Securing energy sources is a key element essential to economic and industrial development in modern society, and research on renewable energy and hydrogen energy is now actively carried out. This research was conducted through experiments and analytical methods on the hydrogen filling process in the hydrogen storage tank of the hydrogen charging station. When low-temperature, high-pressure hydrogen was injected into a high-pressure tanks where hydrogen is charged, the theoretical method was used to analyze the changes in temperature and pressure inside the high-pressure tanks, the amount of hydrogen charge, and the charging time. The analysis was conducted in the initial vacuum state, called the First Cycle, and when the residual pressure was present inside the tanks, called the Second Cycle. As a result of the analysis, the highest temperature inside the tanks in the First Cycle of the high-pressure tank increased to 442.11 K, the temperature measured through the experiment was 441.77 K, the Second Cycle increased to 397.12 K, and the temperature measured through the experiment was 398 K. The results obtained through experimentation and analysis differ within ±1%. The results of this study will be useful for future hydrogen energy research and hydrogen charging station.

Evaluation criteria for filling performance of high-flowing concrete using steel-concrete panel

  • Dong Kyu Lee;Jae Seon Kim;Myoung Sung Choi
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.231-241
    • /
    • 2023
  • The purpose of this study was to evaluate the practical application of high-flowing concrete for a steel-concrete panel (SCP) module for a liquefied natural gas (LNG) storage tank. We evaluated the physical properties and filling performance of the developed concrete for the SCP module. First, slump tests were performed to evaluate the performance of the proposed standards for the filling tests. All the concrete mixes showed satisfactory performance. Based on the results of the previous study, the reliability of the required time measured using the T500 test and the rheometer results measured before and after pumping was 0.94, indicating that segregation and blocking should not occur. L-box and U-box tests were conducted before and after pumping. All the recommended standards showed satisfactory performance. The SCP structural module for LNG storage tanks was fabricated to a full scale to evaluate its practical application at the final site. Satisfactory filling performance was confirmed for all the specimens.

2,600 TEU Container Vessel 의 Fresh Water Tank 구조손상 사례 고찰 (Consideration of Structural Damage of Fresh Water Tank for 2,600 TEU Container Vessel)

  • 신성광;안형준;최의걸;고명섭;임효관
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.216-221
    • /
    • 2005
  • Many tanks such as a fresh water tank, an aft peak tank and oil tanks are arranged in the engine room and aft part areas of the ship. By added mass effect of the fluid inside the tanks, the natural frequency will be changed according to filling height of the tank. For this reason, there is possibility of occurrence of excessive vibration by resonance between natural frequencies of local structure and excitation frequencies of the propeller or main engine. Therefore, calculation of natural frequencies is required for structure for many types of tank which are contacting with water or oil to consider added mass effect for anti-resonance design at design stage. In this study, a case of structure damage on the fresh water tank for 2600 TEU container vessel is introduced. In addition, natural frequency analysis and vibration measurement have been performed to investigate vibration characteristics for excessive vibration control.

  • PDF

질병전염 방지를 위한 농촌변소 개량에 관한 연구 (On the Development of Toilets in Korean Rural Areas for Preventing Transmission of Communicable Diseases)

  • 정문식;정문호
    • 한국환경보건학회지
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 1979
  • An experimental study was carried out to develop a rural type toilet of which the effluent could not transmit parasitic diseases at a village in Kangwon Province, Korea, during the period of January through December 1978, A drum tank (dia. 57cm$\times$90cm) and a cement tank (100cm$\times$100cm$\times$100cm) were filled with human excreta collected from toilets of the villages (the ratio of feces to urine was estimated approximately 1: 5) at once and three threecompartment toilets were constructed and used by people. pH, temperatures and viability of parasitic eggs were examined with the content of toilets. Rusults are summarized as follows: 1. pH increased from 7.0 at the beginning of experiment to 7.5 or 8.0 after 4 months of storage in drum tank as well as in cement tank and so did from 7.0~7.5 in the first tank to 8.0~8.5 in the third tank of all three-compartment toilets. 2. Temperatures of content at middle part of toilets in January through March ranged from 2 to 6$\circ$C which were 2-4$\circ$C higher than those of air, and those of lower part were again 1~2$\circ$C higher than of middle part. but temperatures of air, at middle part andat lower part in April were 14$\circ$C, 9~10$\circ$C and 8~9$\circ$C respectively, in July 29$\circ$C, 20~21$\circ$C and 19~20$\circ$C respe ctively and in October 17$\circ$C, 14$\circ$C and 14~13$\circ$C respectively. 3. All the parasitic eggs were degenerated about 4 months after filling drum tank with human excreta on 10th April while 10% of eggs were degenerated on 15th May, and all the eggs were degenerated about 4 months after filling cement tank on 24th August while about 10% were degenerated on 11th September and 20% on 4th October. 4. Degeneration rates of eggs were only 5~15% at 5cm below surface in the first tanks of three-compartment toilets while 45~65% at 50cm below, and concentration rates of eggs in second tanks were 8~12% of those in first tanks and only a few eggs were found in third tank but all of them were degenerated. Specific gravity of liquid of 1.022~1.024 in second tanks was not enough for overflowing eggs into third tanks.

  • PDF

액체수소 저장 탱크의 중력 방향 및 수소 충전율이 BOG에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effects of Gravity Direction and Hydrogen Filling Rate on BOG in the Liquefied Hydrogen Storage Tank)

  • 서영민;노현우;하동우;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.342-349
    • /
    • 2023
  • In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.