• 제목/요약/키워드: Tangential approach region

검색결과 9건 처리시간 0.029초

BOUNDARY BEHAVIOR OF GREEN'S POTENTIALS WITHIN TANGENTIAL APPROACH REGION

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제11권1호
    • /
    • pp.163-172
    • /
    • 1998
  • In this paper, we will study properties of the Green's potential for the Green's function of B which is defined in [8]. In particular, we will investigate boundary behavior of some functions related with Green's function within tangential approach regions that were used in [4].

  • PDF

하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor)

  • 정원석;황철홍;이규영;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

3차원 유한요소법을 이용한 정상상태의 구름접촉해석 (Three-Dimensional Steady-state Rolling Contact Analysis using Finite Element Method)

  • 이동형;서정원;권석진;함영삼
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.565-571
    • /
    • 2011
  • Because most fatigue cracks in wheel and rail take place by rolling contact of wheel and rail in railroad industry, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. This paper presents an approach to steady-state rolling contact problem of three-dimensional contact bodies, with or without tangential force, based on the finite element method. The steady-state conditions are controlled by the applied relative slip and tangential force. The three-dimensional distribution of tangential traction and contact stresses on the contact surface are investigated. Results show that the distribution of tangential traction and contact stresses on the contact surface varies rapidly as a result of the variation of stick-slip region. The tangential traction is very close in form to Carter's distribution.

임의의 점 군 데이터로부터 NURBS 곡면의 자동생성 (Automatic NURBS Surface Generation from Unorganized Point Cloud Data)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.200-207
    • /
    • 2006
  • In this paper a new approach which combines implicit surface scheme and NURBS surface interpolation method is proposed in order to generate a complete surface model from unorganized point cloud data. In the method a base surface was generated by creating smooth implicit surface from the input point cloud data through which the actual surface would pass. The implicit surface was defined by a combination of shape functions including quadratic polynomial function, cubic polynomial functions and radial basis function using adaptive domain decomposition method. In this paper voxel data which can be extracted easily from the base implicit surface were used in order to generate rectangular net with good quality using the normal projection and smoothing scheme. After generating the interior points and tangential vectors in each rectangular region considering the required accuracy, the NURBS surface were constructed by interpolating the rectangular array of points using boundary tangential vectors which assure C$^1$ continuity between rectangular patches. The validity and effectiveness of this new approach was demonstrated by performing numerical experiments for the various types of point cloud data.

Thermophoresis in Dense Gases: a Study by Born-Green- Yvon Equation

  • Han Minsub
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1027-1035
    • /
    • 2005
  • Thermophoresis in dense gases is studied by using a multi-scale approach and Born- Yvon­Green (BYG) equation. The problem of a particle movement in an ambient dense gas under temperature gradient is divided into inter and outer ones. The pressure gradient in the inner region is obtained from the solutions of BYG equation. The velocity profile is derived from the conservation equations and calculated using the pressure gradient, which provides the particle velocity in the outer problem. It is shown that the temperature gradient applied to the quiescent ambient gas induces some pressure gradient and thus flow tangential to the particle surface in the interfacial region. The mechanism that induces the flow may be the dominant source of the thermophretic particle movement in dense gases. It is also shown that the particle velocity has a nonlinear relationship with the applied temperature gradient and decreases with increasing temperature.

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성 (The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability)

  • 정원석;황철홍;이규영;이창언
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.