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BOUNDARY BEHAVIOR OF GREEN’S POTENTIALS 
WITHIN TANGENTIAL APPROACH REGION

Ki Seong Choi

Abstract. In this paper, we will study properties of the Green’s 
potential for the Green’s function of B which is defined in [8]. In 
particular, we will investigate boundary behavior of some functions 
related with Green’s function within tangential approach regions that 
were used in [4].

1. Introduction
Let B denote the open unit ball in Cn,n > 1. For z,w e Cn, 

let < 2：,w > = |히2 =< 之，之 >. For 0 < r < 1, let

Br = {z E B : \z\ < r} and a the rotation-invariant positive Borel 

measure on S with cr(S) = 1 where S = dB is the unit sphere in Cn. 

For 之 = |히77 € B, the Mobius transformation(pz on B is defined by

새）근I킖쁘=, weB.

Let M be the group of all biholomorphic maps of B onto B. Then 

(月;2： 6 A4 for 之 G B. Further, any 새 E M has a unique representation 

砂 = [7 o(乃之 for some z E B and U eU where U is the unitary group 

(See [6] Theorem 2.2.5).

If v denotes the normalized Lebesgue measure on B, the measure 

A is defined on B by dA(w) = (1 — |i이2)—(저‘1)dz/(w).
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The Bergman metric on the ball B is given by 

n

i,j=고

where

어 = 으 (여 (1 — |：2)n-+i) = 휴三츠平他 - I히2)허 + 하』)우

The Laplace-Beltrami operator of the metric is given by

山 A •. a2
八 = 4히" 石 _石 수i =dzi

where (6V) =

The Green’s function G for the Laplace-Beltrami operator A is 

given by

<7(之, w) = (功 O0)(w)

where

(1) 우) = ☆리-2"+\1 —v

The formula (1) had been derived in 1967 by K.T. Hahn and J. 

Mitchell[2]. The Green’s function on B was used extensively by Ullrich 

in [8]. For a nonnegative regular Borel measure /丄 on B, the Green’s 

potential 으/1 of 乂 is defined by

Gli(z) = / G(z,w)dijKw'), z e B.

J B

A function f : B —> [—oo, oo) is said to be jM-subharmonic on B 

if it is upper semicontinuous and /((乃(0)) < fs for all

中 E M and 0 < r < 1. A function f is A4-superharmonic if —f 



BOUNDARY BEHAVIOR OF GREEN’S POTENTIALS 165

is A4-subharmonic. It is well known that the function g(z) in (1) is 

A4-superharmonic on B (See [8], Lemma 2.7).

In section 2, we will study the jU-superharmonicity of Green’s 

potential.

In section 3, we will investigate some properties of the tangential 

approach regions that were used in [4]. Also, we apply this result 

to show that some functions related with Green’s function has zero 

boundary limits a.e. on S within tangential approach regions.

2. Some properties of Green’s potential
f(z) = h(z) means that there exist positive constants C己 C2 such 

that Cih(z) < f(z) < C사i{z) for all indicated ;z.

Lemma 1. Let 0 <(5 < | be fixed. Then g(z) < (7^(1 “ |히2)n for 

all z e > 6 where is positive constant depending only on 5. 

Furthermore, for all z, \z\ < 6,

( I 끼—2"十2 n > 1, 
으⑵ 以 i 1 _ i

| log 日 n = l.

Proof. The proof is a routine estimation of the integral (1), and 

thus is omitted. □

Lemma 2. Let a e B. Then

(i) (方a(0) = a,(pa(a) = 0 and 夕«(¥수(之)) = 幻

(ii) For all z,w e B, we have

1- < 夕a(g), 夕a(W)> =
(1 — I이2)(1— < 之, W >) 

(1- < 之, a >)(1- < a,w >)

(2) 1- IM에2 =
(1 —|a|2)(l —| 히2) 

|1 — < 之, a > 12
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□Proof, See [6. Theorem 2.2.2 ].

For z e B, let E(z) = {w e B : |0(w)| < }} = 0(」앟). Fix an 

r, 0 < r < 1, and let Ar = {z : r < \z\ < 1}.

Lemma 3. For 0 < q < 1, there exists r0 such that E(z) c AQ for 

all 之, |히 > r().

Proof. We first note that w 三 E(z) if and only if w = 0(f) with 

|f| < Since w € E(z), (1 — |w|2) < 3(1 — |끼2) by Lemma 2.

If 3(1 — |히2) < 1 — 이2, then \w\ > q. If we let r()= | + |으2 , then 

E(z) C Aq for all \z\ < □

Theorem 4. If f丄 is a nonnegative regular Borel measure on B 

such that
[ (1 - |w|2)nd^(w) < oo,

Jb

then Green’s potential Q以 of i丄 is A4-superharmonic.

Proof. Fix ⑵ 0 < 오 < 1, and let 阿 = ^\qb and 시2 = M — I丄i- put 

Ui(z) = Qpa,U2(z) = Q/12- Consider the function Ui(z). By Fatou’s 

Lemma,

lim @l(之) = lim / G(z,w)d/jKw)

Z-^Zq Z-^Zo JqB

> I lim G(^,w)d/z(w) = / G(zq, w)d//(w).

JqB z-^zq JqB

Therefore, for all positive measure /z, is lower semicontinuous. 

For fixed q, there exists r()such that E(z) C AQ for all z, \z\ > r(), by 

Lemma 3.

If |끼 > r(), then E[z) =(pz(6B) C AQ. If w e qB, then w g 

0(5B). Since |0(w)| > 5, 0 <(5 < |,

⑶ 9(W - (i — IW⑴)l2)n
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by Lemma 1. Also

(4) |1— < 之, w > | 之 1 — |끼|w| > 1 - 이끼 之 1 — 以

By (3),

G(之, w) = 5(WW))

丁 C(l —|0(w)|2)"

느 —(1 — 1 히2)"(i — H2)" 『 , ,
으 아——pj  ----丁 |2그——’ w 仁 Q瓦 히 之 ro

|1— < 之, w > |2n

By (4), LWO < C》(l — I히2)" 4b(1 — M2)"如(w) for I；히 > r0.

Therefore 14 美 oo on B.

Since g o(pz is A4-superharmonic and |q?z(w)| = |y>w(之시,

Ul(z) = / (우 o 夕w)O)c仏(w)
J qB

> / / (으0夕w°0)«)成'OmM

J qB Js

= / / (으 0 ¥?W ° (Pz)(r〈)di』[⑴)da(C) 

Js JqB

= [ 引i(0(rO) 成7(0.

So Ui is A4-superharmonic on B.

흐2(之) = / G(z,w)dfjKjuo).
J Ae

L『2(0) = / g(w)dji(w) <C (1 - \w\2)ndfi(w) < oo.
JAe JAe

Hence L『2 美 oo and is «M-superharmonic on B. □



168 KI SEONG CHOI

3. Tangential approach region
For〈 € S, c > 1 and r > 1, the tangential approach regions that 

were used in [4] are

아c,r(C) = {z= I히77 G B : |1— < 7J, C > |T < c(l — |히)} •

These regions were also considered by Nagel et al. [5] for n = 1 and by 

Shaw[7] for any n.

Theorem 5. If z e Qc,r(C), then E(z) C Qc',r(〈) for some con

stant cf.

Proof. Suppose z E S. By Lemma 2,

1- < 0(W),C > = 1— < w(w), ☆(☆(<)) >

(1 — I히2)(1— < W,(Pz(C) >) 

(1- < W，之 >)(1“ < 之,(Pz(〈) >) ’

Cl — 12』흐)
1- < 어시0 >= 느‘ 우시0)’‘시‘:)〉= !—<,/>

Therefore,

아 1 / ( 丄广、、 (1— < 2引: >)(1— < ☆(<) >)
(5) 1- < 0(W), C >= ----------------------

1— < w.z >

Suppose w e 成, 0 < 5 < J, z& QC,T((：). Put 可 = jfp

A-1)2〉'

으 gi — 1) Klkl 五 (i — I히)•
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Since z G Qc,r(〈),

|1— < 句 c > r = |1— < 이, c > _ < 之 _ 四,> r

<(ii— < 77,〈 > 1 +1 < 之 一 a > i)r
(6) 1 1

引나(1 — 1끼)〒 +(1 — 1 끼))- 

드 (스+ ir(i —1 히).

By (5) and (6),

|1— <〈Pz (、⑴),〈 > I

유-1끼2)베If

유11^으^B흐^(0 > I

< C1(1 - |^(w)|2)-3-.

where the second inequality follows by Lemma 2. Therefore,

(7) |i—< w이),c > r 丕以1 —

|i- < > I < (|1— < 之,〈 > I* +11— < 可,之 > P)

(8) < (|1 —I끼|> + |1—< z,C>|>)2

< (이 1—<\c>0)2.

By (7) and (8) ,

드 4-c(l —|九(w)|2)2 江c'(l —|九(w)|).

Hence(pz(w) 6 Qc',r((：). □
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Lemma 6. For n > 1, there exists a constant pn such that for all 

5, 0 < 5 < 2, 

丄이 q（＜,5））으un.

where Q（C, 5） = {rj E S : |1— <（, /）> | < 6} is the Koranyi ball 

centered at〈‘ with radius VS.

Proof. See [6. Proposition 5.1.4 ]. □

Theorem 7. If p, is nonnegative regular Borel measure on B such 

that

for some r > 1, then /z（Qr,c（〈）） < oo for a.e.〈 6 S, fbr all c > 0.

Furthermore, for a.e. C G S

lin즉 ^（Qt,c（C） A Ar） = 0. 
r->l

Proof. Let 豆…⑵ = {C e S : 之 e Qc,T（C）} and 可 = yfp If〈 e 

（之：）, then |1— <〈「,77 > | 玄 2|1— < > \ < 2cr （1 — |히）스. Hence

C e <2（77, 2（今（1 — |끼）*）. Since 豆c,r⑵ C（2（77,2스（1 — |히）브）,

。「（豆c,r⑵） < 으（<?（77, 2合（1 — |히우） < Cn（l — |히）무

by Lemma 6. Put <S/z（C） = /z（Qc,r（C）l

[ <s=O=/ [ GuWW（0
J S J S J B

= /B/s 位리比 W）

= / 0•（豆C,T（흐））⑪⑵

Jb

< / cn（l — |히）뜨如（之） < oo.

Jb
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Hence <S/i G L1(S)., Therefore /z(Qc,T(；2：)) < oo for a.e. ;z and

lim 사(Qc t(之) A Ap) = 0

for a.e. (； E S. □

Define the functions V on B as follows;

V(z) = [ <9(之, w)gLX(w)

JE{z)

Theorem 8. Let /丄 be a nonnegative regular Borel measure on B 

satisfying
[ (1 - |w|2)nd/i(w) < oo.

Jb

Then

lim V(之)=0
之—<，之 eQc,r(<)

for a.e. < E S.

proof.

[ g(z、fdX(z) <c, [ |끼-?(2—2)，⑵ 

J 6B J6B

<C2 r2n-g(2n-2)-ljr <(%
Jo

provided 2n — q(2n — 2) > 0. Thus, for all q < 후끈丁,

sup / Gq(z^ w)dA(2)< oo. 
ZEB JE(z)

By Holder’s inequality, 

’ -| i
V(z) < C [ cLX(w) 

J E(z)
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Suppose z 6 Qr,c(〈). Since E(z) C Qr)c'(C)nAr for any c' > C37나'1 and 

r2 = 이끼2 — 2. Thus V(z) < C j血 ,(<)rMr，(w)] 三 By Theorem?,

lim V(之) = 0
之-<,之€ ①C,t(<)

for a.e.E S.

□
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