• Title/Summary/Keyword: Tangential Swirl

Search Result 97, Processing Time 0.022 seconds

A Numerical Analysis on the Rotordynamic Characteristics of a Hybrid Journal Bearing with Pair-Type Angled Injection Orifices (짝(Pair) 형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석)

  • 김창호;이용복
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter $d_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0~3.0 MPa, 4.0~2.0 MPa, 2.0~4.0 MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter $d_0$ shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial effects on the magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability control of swirl-controlled rotor-bearing system.

Investigation for Spray Characteristics of Dual Swirl Injector (이중 스월 인젝터의 분무특성에 관한 연구)

  • Park Hee Ho;Jeong Chung Yon;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Both numerical analysis and cold tests for the swirl coaxial type injector were performed to obtain the influence of spray angle, velocity ratio and liquid film thickness for pressure drop and recess. The basic experimental and numerical data obtained in this study can be applicable to the performance design of swirl coaxial type injector. Spray angle was not affected by the applied test pressure drop, but spray angle was affected by tangential velocity ratio and shape factors. Feasibility of numerical analysis for the liquid film thickness and spray angle was confirmed, and the change of liquid film thickness by tangential velocity ratio affected more seriously than pressure drop, and liquid film thickness was decreased with increasing tangential velocity ratio.

The Effects of Operating Conditions and Injector Geometry on the Spray Characteristics of Swirl Injectors (스월 인젝터의 작동조건 및 인젝터 형상에 따른 분무특성)

  • Kim, D.J.;Im, J.H.;Han, P.G.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • The flow characteristics of a swirl injector were investigated with the variation of the flow condition and geometric dimensions, such as orifice length for considering the viscous effect and tangential entry port area for considering the swirl intensity. The liquid film thickness strongly influencing on the formed drop size of the spray was measured using a new technique. The film thickness measurement technique proposed here, used the attenuation of fluorescence signal near the injector exit. The breakup length that is important for the flame location as well as the spray cone angle which influences on the ignition performance was measured using a backlit stroboscopic photography technique. From the experimental results, it is found that an increase in injection pressure decreased the film thickness and breakup length, and also enlarged the spray cone angle. A decrease in orifice length and tangential entry port area has a similar tendency of thinner film thickness, shorter breakup length and larger spray cone angle. In the present study, we proposed empirical models of the flow characteristics of the swirl injectors.

  • PDF

An Investigation of Swirling Flow in a Cylindrical Tube

  • Chang, Tae-Hyun;Kim, Hee-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1892-1899
    • /
    • 2001
  • An experimental study was performed for measuring velocity and turbulence intensity in a circular tube for Re= 10,000, 15,000 and 20,000, with swirl and without swirling flow. The velocity fields were measured using PIV techniques and swirl motion was produced by a tangential inlet condition. Some preliminary measurements indicated that over the first 4 diameter, two regions of flow reversal were set up (the so called 2-cell structure). At the highest Reynolds numbers, the maximum values of the measured axial velocity components had moved toward the test tube wall and produce more flow reversal at the conter of the tube. As the Reynolds number increased, the turbulence intensity of swilling flow at the tube inlet also increased.

  • PDF

A study on the effects of intake port eccentricity and a partition between the two intake ports on the in-cylinder swirl characteristics in a valve diesel engine (4밸브 디젤기관의 흡기포트 편심과 두 흡기포트 사이의 격막이 실린더 내 선회 특성에 미치는 영향에 관한 연구)

  • Lee, Ji-Geun;Gang, Sin-Jae;No, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.948-961
    • /
    • 1997
  • The effects of intake port eccentricity and a partition between the two intake ports on the incylinder swirl characteristics in a 4 valve diesel engine having the two intake ports, one is a helical intake port and the other is a tangential intake port, were investigated by using the impulse swirl meter(ISM) in a steady flow test rig. Mean flow coefficient ( $C_{f(mean)}$, swirl ratio ( $R_{s}$) and the mass flowrate through the two intake ports with and without intake port partition were measured. The results showed that the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by valve eccentricity ratio ( $N_{y}$) and the existence of an intake port partition between the two intake ports. Mean flow coefficient ( $C_{f(mean)}$) increases and swirl ratio ( $R_{s}$) decreases in case of being the partition between the two intake ports. And also the mass flowrate through the tangential intake port is 19.0% and 7.7% more than that of the helical intake port in case of the two intake ports with and without partition respectively.ively.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

An Experimental Study on Swirling Flow in a Sudden Expansion Tube using 3D PIV Technique (3D PIV 기법을 이용한 선회유동의 급팽창에 관한 실험적 연구)

  • Chang, Tae-Hyun;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.272-281
    • /
    • 2009
  • The effect of swirl on the flow characteristics in a sudden expansion tube was examined experimentally by using 3D PIV(particle image velocimetry) to capture the velocity profiles. The swirling flow of water through a sudden 1:2 axisymmetric expansion has previously been studied experimentally within a horizontal round tube. A kind of tangential slot is used as a swirl generator for swirling flow and a honey comb is used for without swirl flow. The work with the swirl and without swirl results are compared to each other at the same Reynolds number. Liquid crystal was employed to measure temperature profiles and heating coil used for heat transfer with and without swirl flow. And then the Nusselt number ratoes(Nu/Nudb) are calculated along the test section.

Study of Numerical Modeling of Swirl-Premix Burner for Simulation of Gas Turbine Combustion (가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구)

  • Baek, Gwang Min;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • The flow and combustion characteristics in a premixed swirl combustor with a double cone burner are numerically analyzed to adopt a swirler model. The internal recirculation zone formed at the burner exit can be realized by a swirler with inner and outer diameters of 56 and 152 mm, respectively, and accordingly, the flow rate and radial velocity were determined. To select the tangential velocity, swirl and recirculation angles are introduced. A tangential velocity of 40 m/s produces an internal recirculation zone similar to that in a combustor. At the liner exit, the errors in temperature and velocity are 2.8% and 0%, respectively, and they are negligibly small. However, NOx emissions are underestimated by 67% in the numerical results obtained using the swirler model. Although considerable quantitative errors are induced by the swirler model, it can be useful numerical model for the EV burner because it can approximately simulate the essential flow and combustion characteristics in a premixed swirl combustor with a double cone burner and it is expected to make combustion analysis efficient in a gas turbine combustor with complex geometries.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.