DOI QR코드

DOI QR Code

가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구

Study of Numerical Modeling of Swirl-Premix Burner for Simulation of Gas Turbine Combustion

  • 투고 : 2012.08.29
  • 심사 : 2012.11.16
  • 발행 : 2013.02.01

초록

Double cone 버너를 장착한 스월 예혼합 연소기에 대한 유동 및 연소 특성을 분석하여 swirler 모델을 이용한 수치적 모델링 방법을 제시하였다. 버너 출구에서 형성되는 내부 재순환 영역을 근사적으로 구현하도록 swiler의 내 외경을 각각 56 mm, 152 mm로 결정하였으며 이를 토대로 유량, 반경 반향 속도를 결정하였다. 접선 방향 속도의 설정을 위해 swirl 각도와 재순환 각도를 도입하였으며 40 m/s인 경우 유사한 내부 재순환 영역이 형성되었다. 라이너 출구에서 온도와 속도의 오차는 각각 2.8%, 0%로 작았지만, NOx의 경우 67% 가량 감소한 결과를 보였다. Swirler 모델은 EV 버너의 유동 및 연소 특성을 근사적으로 모사하는 모델의 하나로서 정량적 평가 인자에서 오차를 보이지만, 유동 및 화염, NOx 형성 영역의 경향성이 유사하므로 swirler 모델을 채택하여 복잡한 형상의 발전용 가스터빈 연소기의 효율적인 수치해석이 타당할 것으로 판단된다.

The flow and combustion characteristics in a premixed swirl combustor with a double cone burner are numerically analyzed to adopt a swirler model. The internal recirculation zone formed at the burner exit can be realized by a swirler with inner and outer diameters of 56 and 152 mm, respectively, and accordingly, the flow rate and radial velocity were determined. To select the tangential velocity, swirl and recirculation angles are introduced. A tangential velocity of 40 m/s produces an internal recirculation zone similar to that in a combustor. At the liner exit, the errors in temperature and velocity are 2.8% and 0%, respectively, and they are negligibly small. However, NOx emissions are underestimated by 67% in the numerical results obtained using the swirler model. Although considerable quantitative errors are induced by the swirler model, it can be useful numerical model for the EV burner because it can approximately simulate the essential flow and combustion characteristics in a premixed swirl combustor with a double cone burner and it is expected to make combustion analysis efficient in a gas turbine combustor with complex geometries.

키워드

참고문헌

  1. Kim, H., 2009, "Chemical Reactor Modeling for Prediction of Lean-Premixed Gas Turbine Combustor Nox Formation," Konkuk University, Mechanical Engineering, pp.1-2.
  2. Peter, F, Martin, Z, Rudolf L, Stefano, B. and Christian, M., 2007, "Development and Design of Alstom's Staged Fuel Gas Injection EV Burner for NOX Reduction," ASME Turbo Expo, GT2007-27730.
  3. Fernando, B. and Felic, G., 2007, "Effect of Pressure and Fuel-Air Unmixedness on NOX Emissions from Industrial Gas Turbine Burners," Combustion and Flame, Vol. 151, pp. 274-288. https://doi.org/10.1016/j.combustflame.2007.04.007
  4. Yu, J. H, Kim, B. G. and Chang, Y. J., 2008, "LES Modeling Study on the Characteristics of NOx Emissions in a Lean Premixed Combustor Implementing LES Model," KSME spring conference, pp. 381-386.
  5. Capehart, S. A. and John, C. Y., 1997, "Effect of Fuel Combustion on NOX Formation in Lean Premixed Prevaporized Combustion," ASME, 97-GT-336.
  6. Sohn, C. H. and Cho, H. C., 2005, "A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor," Journal of Mechanical Science and Technology, Vol. 19, pp. 1811-1812. https://doi.org/10.1007/BF02984193
  7. Paschereit, C. O., Schuermans, B. and Buche, D., 2003, "Combustion Process Optimization Using Evolutionary Algorithm," ASME Turbo Expo, GT-38393.
  8. Novosselov, I. V., Malte, P. C., Yuan, S., Srinivasan, J. C. and Lee, Y., 2006, "Chemical Reactor Network Application to Emissions Prediction for Industrial DLE Gas Turbine," ASME Turbo Expo, GT2006-90282.
  9. Linan, A. and Williams, F. A., 1993, "Fundamental Aspects of Combustion," Oxford University Press, pp. 9-13.
  10. Bengtsson, K. U. M., Benz, P., Schären, R. and Frouzakis, C. E., 1998, "NyOx Formation in Lean Premixed Combustion of Methane in a High-Pressure Jet-Stirred Reactor," Symposium (International) on Combustion, Vol. 27, pp. 133-139.
  11. Fernandez-Tarrazo, E., Sanchez, A. L., Linan, A. and Williams, F. A., 2006, "A Simple One-Step Chemistry Model for Partially Premixed Hydrocarbon Combustion," Combustion and Flame, Vol. 147, No.1-2, pp. 32-38. https://doi.org/10.1016/j.combustflame.2006.08.001
  12. Turns, S. R., 2000, "An Introduction to Combustion," Mc-Graw Hill, pp. 472-507.
  13. De Soete, G. G., 1975, "Overall Reaction rates og NO and $N_{2}$ Formation from Fuel Nitrogen," Fifteenth (International) Symposium on Combustion, Vol. 15, pp. 1093-1102.
  14. CFD-ACE User's Manual V2009, 2009, ESI Group.
  15. Lefebrvre, A. H., 1999, Gas Turbine Combustion, Taylor & Francis, pp. 127-128.