• Title/Summary/Keyword: Tangential Load

Search Result 115, Processing Time 0.023 seconds

Study on the Tensile Strength of Virgin Hair by High-Density Oxidative Dye Application (버진 헤어(Virgin hair)의 고명도(高明渡) 산화염모제 시술에 따른 모발 인장강도 연구)

  • Lim, Sun-Nye;Park, Jang-Soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.447-452
    • /
    • 2019
  • Modern people are investing a lot of time and economically in their appearance as a means of expressing their aesthetic desires. They have a lot of hair dyes that make up most of their appearance, but their hair damage is serious. Especially, they use hair dyes which are very popular among the hair cosmetics that make up most of their appearance, but their hair damage is serious. The purpose of this study is to investigate the hair tensile strength of hair with oxidative hair dye to induce styling while minimizing hair damage. The results showed that the Max. load, Max. stress, Max. elongation, break load, break stress, break elongation, maximum modulus and tangential modulus according to evaluation interval were significantly different between control and 8N-10N experimental groups. The maximum modulus and tangential modulus for the strain interval did not show tendency to increase or decrease constantly, although there was a difference between the control and experimental group. Therefore this study was conducted to investigate the correlation between hair loss and hair damage through the treatment of high grade oxidative hair dye, which is widely used in ield of industry. We want to provide application data.

Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity (돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.

Critical Loads of Tapered Cantilever Columns with a Tip Mass (자유단 집중질량을 갖는 변단면 캔틸레버 기둥의 임계하중)

  • Jeong, Jin Seob;Lee, Byoung Koo;Kim, Gwon Sik;Kim, Jong Ung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.699-705
    • /
    • 2005
  • This paper investigates critical loads of tapered cantilever columns with a tip mass, subjected to a follower force. The linearly tapered solid rectangular cross-sections are adopted as the column taper. The differential equation governing free vibrations of such columns, also called Beck's columns, is derived using the Bernoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters, namely, the taper type, the subtangential parameter, and the mass ratio.

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita;Kalkal, Kapil Kumar;Sheoran, Sandeep Singh
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2017
  • In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Development of Octagonal Ring Load Cell Based on Strain Rings (스트레인 링 이론 기반의 팔각링 로드셀 개발)

  • Kim, Joong-Seon;Jo, Hyeong-Geun;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.97-103
    • /
    • 2018
  • Force is a crucial element to be measured in various industries, especially the machine tool industry. Mega units of force are required in fields such as the heavy and ship industries. Micro/nano units of force are required for microparticles. The detection of force generates a physical transformation due to the force imposed from the outside, atlrnd electrical voltage signals are obtained from the system. For the detection of force, an octagonal ring load cell based on circular ring theory is designed and produced. To design the octagonal strain ring, theoretical values with data from the ANSYS program are compared to determine the size of the octagonal strain ring. An octagonal strain ring of the chosen size is made with the SCM415 material. The strain gauges are attached to the octagonal strain ring, designed to construct a full Wheatstone bridge. The LabVIEW program is used to measure the data, and strain values are found. With the octagonal ring load cell completed in this way, experiments are conducted by imposing forces on the tangential axis and radial axis. Experiments are performed to verify if the octagonal ring load cell conducts measurements properly, and theoretical values are analyzed to find any differences. The data will later be used in further research to develop a machine-tool dynamometer.

Fracture Behavior of Rail Steel under Mixed Mode Loading (혼합모드하에서의 레일강의 파괴거동)

  • Chang, Dong Il;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.761-769
    • /
    • 1994
  • Actual load acting on rail surface in the track is the combined mode loading due to the contact rolling load of the wheels. To investigate the fracture behavior on rail steel under combined modes I and II, fracture tests were performed by using the test jigs and fracture specimen which were designed by Richard. The analysis results of experimental fracture data were compared with various fracture criteria that have been introduced for determination of the crack propagation direction and the critical stress of fracture of a crack submitted to a mixed mode loading. From the results, it was shown that the actual crack propagation direction of rail steel agree with the crack propagation directions predicted by maximum tangential stress criterion and strain energy density criterion, and that fracture criterion follows principal strain criterion.

  • PDF

Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems (거친 면 접촉의 정적 마찰계수 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

A study on vibration characteristics of passenger car tire under the static load (정하중을 받는 승용차 타이어의 진동특성에 관한 연구)

  • Moon, Il-Dong;Lee, Tae-Keun;Hong, Dong-Pyo;Kim, Byoung-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.14-22
    • /
    • 1995
  • We treat the vibrations of circular beam and make use of the method employed by J.T.Tielking, which is based on the principle of Hamilton. The Hamilton's principle requires the determinations of the potential and the kinetic energy of the model as well as done by internal pressure forces. Thje potential energy is composed of a part due to elastic deformations of the beam and a part due to radial and tangential displacements of the tread band with respect to the wheel rim. The equations of motion for such a model are derived by reference to conventional energy method. The accuracy of the expressions is demonstrated by comparison of calculated and experimental natural frequencies for circular beam. The circular beam experiences a harmonic, radial excitat- ion acting at a fixed point on the beam. Modal parameters varying the inflation pressure and load are determined experimentally by using the transfer function method.

  • PDF

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.