• Title/Summary/Keyword: Tangent

Search Result 802, Processing Time 0.025 seconds

A Study on the Properties of the PVDF Thin Film Prepared by Vacuum Deposition with Varying the Deposition Condition (진공증착법으로 제작한 PVDF 박막의 증착 조건에 따른 특성변화에 관한 연구)

  • 장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.565-571
    • /
    • 2003
  • We prepare the PVDF thin film using vacuum deposition method with the application of voltage and obtain the optimum deposition condition for $\beta$-PVDF thin film on the basis of the results of FT-IR, crystallinity of $\beta$ phase, surface roughness studies with varying the condition. The phase of PVDF thin film is analyzed by the FT-IR spectrum. When the substrate temperature and applied voltage increase from 3$0^{\circ}C$ to 9$0^{\circ}C$ and from 0kV to 9kV, respectively, the crystallinity of $\beta$ phase is introduced as large as 64%. It means that the substrate temperature and applied voltage allow the phase transition of $\beta$ phase to occur more easily. Also, the surface roughness of PVDF thin film decreases from 65.1nm to 36.6nm with the increase of substrate temperature. In results, we obtain the optimum deposition conditions for $\beta$-PVDF thin film from these experimental results and measure the Properties of the $\beta$-PVDF film deposited in the optimum condition. The dielectric properties such as dielectric constant and loss tangent decrease from 2.34 to 0.44 and from 0.27 to 0.04 with the increase of frequency, respectively.

An Analytical Review on the Inelastic Region of Column Strength Curve Associated with Residual Stress of Steel Member under Axial Force (강 압축 부재의 잔류응력에 따른 기둥강도곡선의 비탄성영역에 대한 해석적 고찰)

  • See, Sang-Kwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This study is the analytical review on the inelastic region of CRC column strength curve. The inelastic region of CRC column strength curve is based on the Bleich theory and the maximum residual stress of $0.5{\sigma}_y$. This is somewhat conservative by considering the fact that the maximum residual stress of $0.3{\sigma}_y$ is well known. This study proposes column strength curve for nonlinear behavior of hot rolled structural steel members under axial force and tangent modulus Et, with the maximum residual stress of $0.3{\sigma}_y$ and compares them with those of CRC. The stress of the inelastic column under axial compression exceeds proportional limits and reaches yielding point before applied load render the column bent. The column strength curve that depends on gradually yielding state of section needs to be reviewed. In this study, it is derived that the critical load formular according to material yielding with the maximum residual stress of $0.5{\sigma}_y$ and compared with CRC column design curve.

Physical and mechanical properties of volcanic glass in the Samho area, South Korea (삼호지역에 분포하는 유리질화산암에 대한 물리적$\cdot$역학적 특성)

  • Kang Seong-Seung;Lee Heon-Jong;Kang Choo-Won;Kim Cheong-Bin
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.223-227
    • /
    • 2005
  • The physical and mechanical properties of volcanic glass, which is distributed in the Samho area, South Korea were studied. Laboratory rock tests were carried out in order to obtain the various properties of rocks. Specific gravity, water content, absorption, porosity and wave velocity were measured for the physical properties. Uniaxial and triaxial compressive tests, Brazilian test and point load test were also performed for the mechanical properties. The tests of volcanic glass revealed that the apparent specific gravity, water content and absorption were 2.28, $1.67\%$ and $1.72\%$, respectively. Porosity $(3.87\%)$ was lower, whereas P-wave velocity (5330m/s) and S-wave velocity (2980 m/s) were relatively higher. Brazilian tensile strength ot 7.2MPa, and point load strength of 2.6MPa were among the mechanical properties of the rock. Uniaxial compressive strength (62.4MPa) estimated ken point load strength was very closed to the value (66.0MPa) from the uniaxial compressive test. Young's modulus and Poisson's ratio were E=43.2 GPa and v=0.28, respectively. Drawing the tangent line to Mohr-Coulomb failure criterion showed the cohesion of 20.1MPa and internal fraction angle of $28.6^{\circ}$.

Development of Predicting Models of the Operating Speed Considering on Traffic Operation Characteristics and Road Alignment Factors In Express Highways (고속도로 교통운영 특성 및 도로선형요소를 반영한 주행속도 예측모형 개발)

  • Lee, Jeom-Ho;Hong, Da-Hui;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.109-121
    • /
    • 2006
  • The road should be designed in the consistent alignment which the driver can drive safely. Also, proper highway environments in order to maintain optimal operational speeds on highway sections should be provided In design stage, for highway environments, it is essential for an operational speed estimation model to different highway environments. If a method which could evaluate the status of the road safety is developed through this operational speed estimation model, it is possible to provide safe and more comfortable highways to road users. In the study factors to effect on operational speeds are classified into three groups horizontal & vertical alignments and traffic operation characteristic factors. Factors are chosen to effect on operational speeds by using collation analysis as classifications of tangent sections, horizontal curve sections and vertical curve sections. In order to develop operational speed estimation models in express highways, multi-regression analysis has been used in this study using the selected factors. This study has meaning that the developed estimation models for operational speeds and evaluation of degree of safety to horizontal and vortical alignments simultaneous. In order to represent whole area of the country with the developed models, the models should be re-analyzed with vast data related with road alignment factors in the near future.

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.

Development of Operating Speed Prediction Models Reflecting Alignment Characteristics of the Upstream Road Sections at Four-Lane Rural Uninterrupted Flow Facility (상류부 선형특성을 반영한 지방부 왕복 4차로 연속류 도로의 주행속도 예측모형 개발)

  • Jo, Won-Beom;Kim, Yong-Seok;Choe, Jae-Seong;Kim, Sang-Yeop;Kim, Jin-Guk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.141-153
    • /
    • 2010
  • The study is about the development of operating speed prediction models aimed for an evaluation of design consistency of four lane rural roads. The main differences of this study relative to previous research are the method of data collection and classification of road alignments. The previous studies collected speed data at several points in the horizontal curve and approaching tangent. This method of collection is based on the assumption that acceleration and deceleration only occurs at horizontal tangents and the speed is kept constant at horizontal curves. However, this assumption leads to an unreliable speed estimation, so drivers' behavior is not well represented. Contrary to the previous approach, speed data were collected with one and data analysis using a speed profile is made for data selection before building final models. A total of six speed prediction models were made according to the combination of horizontal and vertical alignments. The study predicts that the speed data analysis and selection for model building employed in this study can improve the prediction accuracy of models and be useful to analyze drivers' speed behavior in a more detailed way. Furthermore, it is expected that the operating speed prediction models can help complement the current design-speed-based guidelines, so more benefits to drivers as real road users, rather than engineers or decision makers, can be achieved.

Development of a Semi-Atomatic Protocol for embodiment of a desirable 3D breast shape and deployment of bra cup pattern (3차원의 바람직한 유방형상 구현을 위한 Semi-Atomatic Protocol 개발 및 브래지어 컵 패턴으로의 전개)

  • Sohn, Boo-hyun;Kweon, Soo-ae
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.189-206
    • /
    • 2016
  • A breast model was for the human body was devised by studying a body scan and human body index of a desirable breast type. Thus, when manufacturing various 3D models, these results can accordingly become a fundamental basis for realizing a desirable breast model. This study aims to provide a basic data for designing the cup patterns of brassieres in order to improve the function and wearing comfort. The comfort of three kinds of brassieres were compared: one manufactured by the actual measured size; another manufactured as per the ratio of desirable upper and lower breast lengths; and the third manufactured by the 3D model attained by the desirable human body ratio. In this study, we suggest a process for realizing the desirable breast model using the ratio of bust breadth and waist front length, which are the components for deciding the appropriate position and size of breast, and which are easy to measure. The ideal breast shape is an equilateral triangle formed by connecting the nipple with the center of the clavicle. After deciding the interval between the nipples, this value can be used to configure the locations of nipples by drawing a tangent, with equal length, from the anterior neck point (which is the center of clavicle) to the nipple. Also, since inside points of breast do not exist, the outer point of breast, upper point of breast, and below point of breast on the same plane, and the depths from the nipple point to the respective points, are applied to simulate a 3D image, by modifications along the x, y, and z axes. Depending on the type of breast, the length from the center of shoulder to the nipple, the diameter of breast, upper length of breast, and the position of nipple, are different. In conical or protruding breast, the wearing sensation is better when the nipple point of brassiere was lifted, by modifying the upper and lower lengths of breast. Considering the wearing sensation and function of a brassiere, it was better to leave the wearer's size as it is and use a pad within the same cup, rather than increase the basal area of the breast in order to increase the volume.

RHEOLOGICAL CHARACTERIZATION OF COMPOSITES USING A VERTICAL OSCILLATION RHEOMETER (수직 진동형 Rheometer를 이용한 복합레진의 유변학적 성질의 측정)

  • Lee, In-Bog;Cho, Byung-Hoon;Son, Ho-Hyun;Lee, Sang-Tag;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2004
  • Objective: The purpose of this study was to investigate the viscoelastic properties related to handling characteristics of composite resins, Methods: A custom designed vertical oscillation rheometer (VOR) was used for rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit and (3) a force detecting unit, Two medium viscous composites, Z100 and Z250 and two packable composites, P60 and SureFil were tested. The viscoelastic material function, including complex modulus $E^{*}$ and phase angle ${\delta}$, were measured. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E") and loss tangent ($tan{\delta}$) of the composites as a function of frequency ($\omega$) from 0.1 to 20 Hz at $23^{\circ}C$. Results: The E' and E" increased with increasing frequency and showed differences in magnitude between brands. The $E^{*}s$ of composites at ${\omega}{\;}={\;}2{\;}Hz$, normalized to that of Z100, were 2.16 (Z250), 4,80 (P60) and 25.21 (SureFil). The magnitudes and patterns of the change of $tan{\delta}$ of composites with increasing frequency were significantly different between brands. The relationships between the complex modulus $E^{*}$, the phase angle ${\delta}$ and the frequency \omega were represented by frequency domain phasor form, $E^{*}{\;}(\omega){\;}={\;}E^{*}e^{i{\delta}}{\;}={\;}E^{*}{\angle}{\delta}$. Conclusions: The viscoelasticity of composites that influences handling characteristics is significant different between brands, The VOR is a relatively simple device for dynamic, mechanical analysis of high viscous dental composites. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composites.

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

A Characteristic of Deformation and Strength of Domestic Sands by Triaxial Compression Tests (삼축압축시험에 의한 국내 모래의 변형-강도 특성)

  • Park, Choon Sik;Kim, Jong Hwan;Park, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.515-527
    • /
    • 2014
  • This study conducted experiment for understanding engineering characteristics of domestic sands by examining standard sand and sand from Yokji Island and Nakdong River in terms of confining pressure, $K_0$, over consolidation and relative density factors through triaxial compression test. The test showed that deviator stress by strain positively changed as confining pressure and relative density grow while $K_0$ and over consolidation factors do not directly correlated with it. Angle of internal friction decreases as confining pressure increases which strengthens contact force between particles, and declines as relative density drops, whereas $K_0$ and over consolidation factors hardly affect the results. When it comes to volumetric strain, volume expansion decreases as confining pressure increase due to crushability and rearrangement of particles while $K_0$ and over consolidation shows same movement unconditionally, and relative density appears compressed as it grows at the beginning however it expands as axial strain increases. Modulus of elasticity ($E_{sec}$) by strain has tendency into convergence resulting in initial secant modulus of elasticity ($E_{ini}$) > secant modulus of elasticity($E_{sec}$) > tangent modulus of elasticity ($E_{tan}$). On the other hand, it grows as confining pressure and relative density increase while indicating similar modulus of elasticity ($E_{sec}$) regarding on $K_0$ and over consolidation. Slope of critical line (M) tended to decrease as confining pressure increases, follow same line according to $K_0$, confining pressure and relative density, and increase as relative density grows.