• Title/Summary/Keyword: Tandem Mass Spectrometry (MS/MS)

Search Result 442, Processing Time 0.026 seconds

Simultaneous Quantitative Determination of Nine Hallucinogenic NBOMe Derivatives in Human Plasma Using Liquid Chromatography Tandem Mass Spectrometry

  • Seo, Hyewon;Yoo, Hye Hyun;Kim, Young-Hoon;Hong, Jin;Sheen, Yhun Yhong
    • Mass Spectrometry Letters
    • /
    • v.10 no.1
    • /
    • pp.18-26
    • /
    • 2019
  • We developed a bioanalytical method for simultaneous determination of nine NBOMe derivatives (25H-NBOMe, 25B-NBOMe, 25E-NBOMe, 25N-NBOMe, 25C-NBOH, 25I-NBOH, 25B-NBF, 25C-NBF, and 25I-NBF) in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). Human plasma samples were pre-treated using solid-phase extraction. Separation was achieved on a C18 column under gradient elution using a mobile phase containing 0.1% formic acid in acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 mL/min. Mass detection was performed in the positive ion mode using multiple reaction monitoring. The calibration range was 1-100 ng/mL for all quantitative analytes, with a correlation coefficient greater than 0.99. The intra- and inter-day precision and accuracy varied from 0.85 to 6.92% and from 90.19 to 108.69%, respectively. The recovery ranged from 86.36 to 118.52%, and the matrix effects ranged from 27.09 to 99.72%. The stability was acceptable in various conditions. The LC-MS/MS method was validated for linearity, accuracy, precision, matrix effects, recovery and stability in accordance with the FDA guidance. The proposed method is suitable for reliable and robust routine screening and analysis of nine NBOMe derivatives in forensic field.

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3233-3240
    • /
    • 2012
  • We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.

Liquid Chromatography-tandem Mass Spectrometry for Quantification of Dioscin in Rat Plasma

  • Kong, Tae Yeon;Ji, Hye Young;Choi, Sang-Zin;Son, Miwon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.55-58
    • /
    • 2013
  • Dioscin is a biologically active steroidal saponin with anticancer and hepatoprotective effects. A rapid, selective, and sensitive liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for the quantification of dioscin in rat plasma. Dioscin was extracted from rat plasma using ethyl acetate at acidic pH. The analytes were separated on a Halo C18 column using gradient elution of acetonitrile and 0.1% formic acid and detected by tandem mass spectrometry in selected reaction monitoring mode. The standard curve was linear ($r^2$ = 0.998) over the concentration range of 1-100 ng/mL. The lower limit of quantification was 1.0 ng/mL using 50 ${\mu}L$ of plasma sample. The coefficient of variation and relative error for intra- and inter-assay at four QC levels were 1.3 to 8.0% and -5.4 to 10.0%, respectively. This method was applied successfully to the pharmacokinetic study of dioscin after oral administration of dioscin at a dose of 29.2 mg/kg in male Sprague-Dawley rats.

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches (질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석)

  • Hwang, Cheol-hwan;Park, Han-Gyu;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Lithospermic Acid B in Rat Serum

  • Kim, Hui-Hyun;Ji, Hye-Young;Lee, Hye-Won;Kim, Youn-Chul;Sohn, Dong-Hwan;Lee , Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1202-1206
    • /
    • 2004
  • A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/ MS) method for the determination of lithospermic acid B (LSB) in rat serum was developed. LSB and internal standard, 7-hydroxy-3-phenyl-chromen-4-one (HPC) were extracted from rat serum with methyl-tert-butyl ether at acidic pH and analyzed on a Luna $C_8$ column with the mobile phase of acetonitrile-ammonium formate (10 mM, pH 6.5) (50:50, v/v). The analytes were detected using a negative electrospray ionization tandem mass spectrometry in the multiple- reaction-monitoring mode. The standard curve was linear $(r^2 = 0.997)$ over the concentration range of 10.0-500 ng/mL. The coefficient of variation and relative error for intra- and interassay at three QC levels were 1.1~6.2% and -10.3~-2.7%, respectively. The recovery of LSB from serum sample ranged from 73.2 to 79.5%, with that of HPC (internal standard) being 75.1 %. The lower limit of quantification for LSB was 10 ng/mL using 50 ${\mu}L$ of serum sample.

Estimation and Analysis Methods for Trastuzumab Deamidation Levels Using Mass Spectrometry

  • Daebong Moon;Geonwoo Kim;Minjae Park;Sunyeol Hong;Mihyeon Nam;Sungsic Park;Jintae Hong
    • Mass Spectrometry Letters
    • /
    • v.15 no.2
    • /
    • pp.107-119
    • /
    • 2024
  • We aimed to develop a suitable quantification method for detecting asparagine deamidation and aspartic acid isomerization in peptide mapping using LC-MS. Our assessment of its validity and suitability involved comparing its quantitative findings with those obtained from cation-exchange chromatography and capillary electrophoresis methods. By subjecting trastuzumab to rigorous conditions to induce these modifications, we validated the efficacy of this new analytical method in peptide mapping via LC-MS, evaluating both qualitative and quantitative aspects of asparagine deamidation and aspartic acid isomerization. Our investigation underscored the significance of enzyme selection and the presence of miss-cleaved or non-specific peptides in achieving accurate quantitative results. The experimental results demonstrated a strong correlation with results from cation-exchange chromatography and capillary electrophoresis analyses, confirming the reliability of the LC-MS based peptide mapping approach.

Liquid Chromatography-Tandem Mass Spectrometric Analysis of Nannozinone A and Its Application to Pharmacokinetic Study in Mice

  • Lee, Chul Haeng;Kim, Soobin;Lee, Jaehyeok;Jeon, Ji-Hyeon;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2021
  • We aimed to develop and validate a sensitive analytical method of nannozinone A, active metabolite of Nannochelins A extracted from the Myxobacterium Nannocytis pusilla, in mouse plasma using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mouse plasma samples containing nannozinone A and 13C-caffeine (internal standard) were extracted using a liquid-liquid extraction (LLE) method with methyl tert-butyl ether. Standard calibration curves were linear in the concentration range of 1 - 1000 ng/mL (r2 > 0.998) with the inter- and intra-day accuracy and precision results less than 15%. LLE method gave results in the high and reproducible extraction recovery in the range of 78.00-81.08% with limited matrix effect in the range of 70.56-96.49%. The pharmacokinetics of nannozinone A after intravenous injection (5 mg/kg) and oral administration (30 mg/kg) of nannozinone A were investigated using the validated LC-MS/MS analysis of nannozinone A. The absolute oral bioavailability of nannozinone A was 8.82%. Plasma concentration of nannozinone A after the intravenous injection sharply decreased for 4 h but plasma concentration of orally administered nannozinone A showed fast distribution and slow elimination for 24 h. In conclusion, we successfully applied this newly developed sensitive LC-MS/MS analytical method of nannozinone A to the pharmacokinetic evaluation of this compound. This method can be useful for further studies on the pharmacokinetic optimization and evaluating the druggability of nannozinone A including its efficacy and toxicity.

Determination of Glimepiride in Human Plasma by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry

  • Kim, Ho-Hyun;Chang, Kyu-Young;Lee, Hee-Joo;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.109-114
    • /
    • 2004
  • A sensitive method for quantitation of glimepiride in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS). Glipizide was used as an internal standard. Glimepiride and internal standard in plasma sample was extracted using diethyl etherethyl acetate (1 : 1). A centrifuged upper layer was then evaporated and reconstituted with the mobile phase of acetonitrile-5 mM ammonium acetate (60:40, pH 3.0). The reconstituted samples were injected into a $C_{18}$ reversed-phase column. Using MS/MS in the multiple reaction monitoring (MRM) mode, glimepiride and glipizide were detected without severe interference from human plasma matrix. Glimepiride produced a protonated precursor ion ([M+H]$^+$) at m/z 491 and a corresponding product ion at m/z 352. And the internal standard produced a protonated precursor ion ([M+H]]$^+$) at m/z 446 and a corresponding product ion at m/z 321. Detection of glimepiride in human plasma by the LC-ESI/MS/MS method was accurate and precise with a quantitation limit of 0.1 ng/mL. The validation, reproducibility, stability, and recovery of the method were evaluated. The method has been successfully applied to pharmacokinetic studies of glimepiride in human plasma.

Isomer Differentiation Using in silico MS2 Spectra. A Case Study for the CFM-ID Mass Spectrum Predictor

  • Milman, Boris L.;Ostrovidova, Ekaterina V.;Zhurkovich, Inna K.
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.93-101
    • /
    • 2019
  • Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we explore how distinct in silico $MS^2$ spectra are predicted for isomers, i.e. compounds having the same formula and similar molecular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra constitute a reference library, and library searches are performed for test experimental spectra of "unknowns". The searches led to the true positive rate (TPR) of ($46-48{\pm}10$)%. In the second test, in silico and experimental spectra were interchanged and this resulted in a TPR of ($58{\pm}10$)%. There were no significant differences between results obtained with different metrics of spectral similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable results for predicting tandem mass spectra of related chemical structures.

Determination of S- and R-Amlodipine in Rat Plasma using LC-MS/MS After Oral Administration of S-Amlodipine and Racemic Amlodipine

  • Yoo, Hye-Hyun;Kim, Tae-Kon;Lee, Bong-Yong;Kim, Dong-Hyun
    • Mass Spectrometry Letters
    • /
    • v.2 no.4
    • /
    • pp.88-91
    • /
    • 2011
  • The pharmacokinetic properties of S-amlodipine were studied using racemic amlodipine and single S-enantiomer (SK310) administration to rats. Plasma levels of the drug were determined using chiral liquid chromatography coupled with tandem mass spectrometry following solid phase extraction. The stereospecific analysis of amlodipine was performed on an ${\alpha}$-acid glycoprotein (AGP) column using a mobile phase comprising 10 mM ammonium acetate (pH 4.0) and propanol at a flow rate of 0.2 mL/min. This method was used to perform a comparative study of the pharmacokinetics of amlodipine and SK310. The results revealed that the pharmacokinetic profile of S-amlodipine after the administration of SK310 was comparable to that following the administration of the racemic mixture.