Browse > Article
http://dx.doi.org/10.5478/MSL.2019.10.3.93

Isomer Differentiation Using in silico MS2 Spectra. A Case Study for the CFM-ID Mass Spectrum Predictor  

Milman, Boris L. (Institute of Experimental Medicine)
Ostrovidova, Ekaterina V. (Institute of Experimental Medicine)
Zhurkovich, Inna K. (Institute of Toxicology)
Publication Information
Mass Spectrometry Letters / v.10, no.3, 2019 , pp. 93-101 More about this Journal
Abstract
Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we explore how distinct in silico $MS^2$ spectra are predicted for isomers, i.e. compounds having the same formula and similar molecular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra constitute a reference library, and library searches are performed for test experimental spectra of "unknowns". The searches led to the true positive rate (TPR) of ($46-48{\pm}10$)%. In the second test, in silico and experimental spectra were interchanged and this resulted in a TPR of ($58{\pm}10$)%. There were no significant differences between results obtained with different metrics of spectral similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable results for predicting tandem mass spectra of related chemical structures.
Keywords
tandem mass spectrometry; isomers; prediction of mass spectra; mass spectral libraries; prediction performance; structural similarity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Milman, B. L.; Zhurkovich, I. K. Trends Anal. Chem. 2016, 80, 636.   DOI
2 Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.; Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M.; Fiehn, O. Mass. Spec. Rev. 2018, 37, 513.   DOI
3 Milman, B. L. Chemical identification and its quality assurance, Springer: Heidelberg, 2011.
4 Wolfender, J. L.; Nuzillard, J. M.; Van Der Hooft, J. J.; Renault, J. H.; Bertrand, S. Anal. Chem. 2018, 91, 704.   DOI
5 PubChem; See https://pubchem.ncbi.nlm.nih.gov.
6 Chemical Abstracts Service; See https://www.cas.org.
7 Milman, B. L.; Zhurkovich, I. K. Trends Anal. Chem. 2017, 97, 179.   DOI
8 MassBank of North America; See http://mona.fiehnlab.ucdavis.edu/downloads.
9 Allen, F.; Greiner, R.; Wishart, D. Metabolomics 2015, 11, 98.   DOI
10 Allen, F.; Greiner, R.; Wishart, D. Curr. Metabolomics 2017, 5, 35.   DOI
11 CFM-ID. 2.0; See http://cfmid.wishartlab.com/predict.
12 Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D., Gautam, M.; Allen, F.; Wishart, D. S. Metabolites 2019, 9, 72.   DOI
13 CFM-ID. 3.0; See http://cfmid3.wishartlab.com/predict.
14 Milman, B. L.; Zhurkovich, I. K. MSL 2018, 9, 73.
15 The National Institute of Standards and Technology. NIST Mass Spectral Search Program, version 2.3; See https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nist17.
16 Bolton, E. (National Institutes of Health, USA). Personal communication, 2018.
17 Sample Size Calculator; See https://www.surveysystem.com/SSCALC.HTM.
18 Statistical Significance Calculator; See https://www.easycalculation.com/statistics/statistical-significance.php.
19 ChemMine Tools; See http://chemminetools.ucr.edu.
20 P value from Pearson (R) Calculator; See https://www.socscistatistics.com/pvalues/pearsondistribution.aspx.
21 Stein, S. E.; Scott, D. R. J. Am. Soc. Mass Spectrom. 1994, 5, 859.   DOI
22 Andersen, J. L.; Fagerberg, R.; Flamm, C.; Kianian, R.; Merkle, D.; Stadler, P. F. MATCH Commun. Math. Comput. Chem. 2018, 80, 705.
23 Duhrkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Bocker, S. Nat. methods 2019, 16, 299.   DOI