• Title/Summary/Keyword: Takeoff and Landing

Search Result 83, Processing Time 0.024 seconds

TOLAPS - A PROGRAM FOR TAKEOFF AND LANDING PROFILE SIMULATIN

  • Kare H. Liasjo;Herold Olsen;Idar L.N. Granoien;Hans E. Bohn
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.710-715
    • /
    • 1994
  • The program name TOLAPS is an acronym for Take-Off LAnding Profile Simulation. Some of the interesting features of this program is the ability to detect flight performance effects of airport altitude, ambient temperature, air pressure and wind. TOLAPS can also handle effects of TOW and LW. The program user can also calculate profiles by user difined flaps and thrust settings deviating from recommended standard settings for each aircraft. Wind effects on straight out flying as well as turns can also be demonstrated. Output form TOLAPS are either screen graphics of profiles (altitude, speed or thrust versus flight distance) or flight track. Profiles can also be made in a tabular form, ready for use in most airport noise calculation programs. In this way, TOLAPS is a valuable tool to evaluate effects of noise abatement procedures.

  • PDF

Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing (수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법)

  • Lee, Sang-Hoon;Song, Jin-Mo;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.

Three-dimensional Kinematic Analysis of the Yurchenko Layout with 360-degree Twist in Female Vaults: Deterministic Model and Judges' Scores

  • Park, Cheol-Hee;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Objective: The purpose of this study was to identify kinematic variables that govern successful performance and judges' scores and to establish correlative relationships among those of Yurchenko layout with a full twist in female vaults. Method: Four video cameras with sampling rate of 60 Hz collected 32 motion data of Yurchenko vaults from twenty-two female participants (age: $18.6{\pm}3.6years$, height: $153.0{\pm}6.5cm$, mass: $44.7{\pm}7.3kg$) during national competition. Posting processing and calculations of kinematic variables were performed in Kwon 3D XP and $Matlab^{(R)}$ programs. Correlation and regression analyses were applied to find the relationships between the obtained scores and kinematic variables. Deterministic model (Hay & Reid, 1988) was used to investigate the strength of correlative relationships among kinematic variables. Results: The obtained scores from the judges' decision were mainly affected by post-flight peak height, horse contact time, knee angle at landing, and horse takeoff angle. Strong blocking during horse contact was required to get successful performance and obtain high scores. Modified deterministic model showed that round-off entrance and takeoff angles and resultant velocity of the center of mass (CM) during the roundoff phase were the starting variables affecting performance in the following kinematics. Knee angle at landing, a highly influential variable on the obtained point, was only determined by judges' decision without significant correlative relationship with previous kinematic variables. Conclusion: The obtained scores highly depended on kinematic variables of post-flight and horse contact phases that were affected by those from the previous phases including round-off postures and resultant velocity of the body center of mass.

A Study on the Establishment of Education and Training Program for Urban Air Mobility(UAM) Pilot in Korea (국내 도심항공모빌리티(UAM) 조종사 교육·훈련제도 수립 방안 연구)

  • Young-jin Cho;Chul Park;Se-Hoon Yim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.330-336
    • /
    • 2023
  • Rapid urbanization is rapidly progressing around the world, and urban problems such as traffic congestion, environmental pollution, and noise pollution are emerging, due to this urban concentration phenomenon, logistics and transportation costs are increasing. Urban Air Mobility(UAM) is a three-dimensional futuristic urban transportation that is expected to become an important transportation axis of smart cities as a service(MaaS) linked to roads, railways, and personal transportation. However, as of July 2023, research on airspace systems, Bertieport design, navigation, and communication for UAM operation is actively being conducted, but little research has been conducted on the concept of pilot education and training and education and training programs. Therefore, this paper aims to present a suitable plan for the domestic pilot training system through SWOT analysis of vertical takeoff and landing(VTOL) pilot education and training programs in the United States and Europe.

A Study on the Stochastic Demand Forecast for the Capacity Calculation of Urban Planning Facilities (도시계획시설 용량 산정을 위한 확률적 수요 예측에 관한 연구)

  • Jae Young Kang;Jong Jin Kim
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.135-146
    • /
    • 2024
  • This study predicts the means sharing ratio of the urban air transportation (UAM) when the VertiHub of the UAM in the southern western part is built at Songjeong Station in Gwanju. Based on Monte Carlo simulation of the utility function and means selection logit model for each means of transportation, our findings indicate an average mode share of 0.95%, with a variability range from 0.07% to 4.7%. Moreover, 95% of the simulation outcomes fall below a 2.02% mode share. Sensitivity analysis, conducted via Tornado Plot, highlights that the mode share is principally influenced by factors such as the unit fare, cost parameter, basic fare, and the time required for takeoff and landing. Notably, a negative correlation exists for unit fare, basic fare, and takeoff and landing time, suggesting the necessity of setting an appropriate level of fair to enhance UAM utilization.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification (인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계)

  • Park, Jinhwan;Tyan, Maxim;Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.649-656
    • /
    • 2013
  • High-lift devices have a major influence on takeoff, landing and stall performance of an aircraft. Therefore, a slotted flap design optimization process is proposed in this paper to obtain the most effective flap configuration from supported 2D flap configuration. Flap deflection, Gap and Overlap are considered as main contributors to flap lift increment. ANSYS Fluent 13.0.0$^{(R)}$ is used as aerodynamic analysis software that provides accurate solution at given flight conditions. Optimum configuration is obtained by Sequential Quadratic Programing (SQP) algorithm. Performance of the aircraft with optimized flap is estimated using Aircraft Design Synthesis Program (ADSP), the in-house performance analysis code. Obtained parameters such as takeoff, landing distance and stall speed met KAS-VLA airworthiness requirements.

Physics-based Simulation of a VTVL Vehicle for 2D Games (2D 게임을 위한 수직 이착륙 비행체의 물리 기반 시뮬레이션)

  • Moon, Sukjin;Choi, Min Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • In this paper, we consider a physics-based 2D flight simulation game where users can easily control realistic flight of a vehicle equipped with two thrusters that allow vertical takeoff and vertical landing. The flight vehicle can be manipulated by directly controlling the thrusting force at each thruster using a pair of analog input devices such as joysticks. However, it might require too much practice to make aerobatic flying solely with this kind of control. We propose a set of fly-by-wire methods that provide easy-to-use, intuitive control of a VTVL vehicle. Based on PD controllers, the proposed methods allow users to specify the velocity or position of the vehicle directly. Furthermore, they are easy to understand and simple to implement. We expect that the proposed vehicle model and control mechanism could be used in various 2D games.

Empirical Analysis of Airplane Route for Reduction of Aircraft Noise at Gimhae International Airport (김해국제공항 항공기 소음 저감을 위한 비행기항적실증분석)

  • Kim, Bong-Ki;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.257-266
    • /
    • 2021
  • This study explored measures to reduce noise applicable to Gimhae international airport centering on densely packed housing areas. Especially, as for measures to relieve noise damage on the densely packed housing areas in Gimhae-si, the noise reduction effect is expected to be doubled if the west runway (36L/18R) is used as the preferred runway for the 36 direction takeoff, as well as if the flight bypasses the densely packed housing areas by means of sophisticated navigation using the area navigation (RNAV) procedure based on performance-based navigation (PBN). Takeoff toward the south connects the flight path to the South Sea which has comparatively low noise impact, relieving noise damage on the densely packed housing areas (apartment complexes in Naeoe-dong of Gimhae-si, etc.) near the northern end of the runway. The operation of the runway displaced threshold is currently being implemented on the west runway (36L/18R) of Gimhae international airport. It has been found that swing landing in spring and summer when the wind blows from the south has a noise reduction effect on the noise sensitive areas at the side and end of the west runway (Gangdong-dong and Jukdong-dong of Gangseo-gu and Buram-dong of Gimhae-si, etc.).

Flying-wing Type Compound Drone Design and Mission Accuracy Analysis (전익기형 복합드론의 설계 및 임무 정확도 연구)

  • Sung, Dong-gyu;Koh, Eun-hak;Kim, Ju-chan;Nam, Yong-hyeon;Lee, Jeong-ho;Lee, Jae-seung;Lee, Chan-bin;Jeon, Yeong-bae;Choi, Cheol-kyun;Lee, Jae woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.122-128
    • /
    • 2018
  • A compound drone that combines a fixed wing and a rotary wing is an aircraft that can take off and landing vertically, and can increase flight time and fly faster with fixed wings. The compound drones are divided into many types depending on the method of adding the thrust vectoring or the lift fan and the position of the rotor. In this study, we designed and fabricated a composite drone with four V-TOL motors in a fixed-wing, and assigned missions to the aviation body, hence judged mission accuracy using the actual flight test. The design process and the mission evaluation process employed in this study can be utilized on the development of various unmanned aerial vehicle.