• Title/Summary/Keyword: Takeoff Angle

Search Result 22, Processing Time 0.019 seconds

Kinematic Analysis of Hurdling of Elite 110-m Hurdlers (엘리트 110m 허들선수의 세 번째 허들 넘기 동작에 대한 자세 분석)

  • Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.761-770
    • /
    • 2009
  • The purpose of this study was to observe the kinematic patterns of hurdling by domestic hurdlers and elite hurdlers from other countries in particular, we studied the hurdling motion and joint angles at the third hurdle in 110-m hurdle races. There were slight differences in the following variables at takeoff and landing: angle of the center of gravity(elite hurdler, $34.14^{\circ}$ domestic hurdler, $24.89^{\circ}$), angle variables the body angle(elite hurdler, $4.27^{\circ}$ domestic hurdler, $6.37^{\circ}$), the angle of trunk inclination(elite hurdler, $3.18^{\circ}$ domestic hurdler, $11.58^{\circ}$), and the hip angle(elite hurdler, $40.1^{\circ}$ domestic hurdler, $43.2^{\circ}$).

Biomechanical Analysis of Men's High Jump Medalists in IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 남자 높이뛰기 메달리스트들의 바이오메카닉스적 특성 분석)

  • Kim, Eui-Hwan;Bae, Young-Sang;Kim, Sung-Sup;Kwon, Moon-Seok;Wi, Ung-Ryang;KIm, Ki-Man;Lee, Jeong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.573-584
    • /
    • 2011
  • The purpose of this study was to perform a kinematic analysis of the high jump techniques of the three men's medalists at the 2011 IAAF Championships in Daegu (August 27-September 4, 2011). In particular, a three-dimensional coordinates method was used to analyze the last three strides before touchdown, the touchdown techniques, and the movements after takeoff toward the bar. An analysis of the, data for the biomechanical characteristics of the world's best high jumpers could contribute to an improvement in the performance of a national high jumper. The first conclusion of the data analysis was that the arm movements of the gold medalist, J. Williams, had a single arm form, whereas the arm movements of the other medalists were a double arm form. Second, the difference in the knee joint angles upon touchdown and toe-off was $10^{\circ}$. Third, J. Williams achieved his maximum CM height after takeoff (1.26 m) using the maximum flexion of his knee joint. Fourth, the foot contact duration of A. Dmitrik (0.11 s) was the shortest among the medalists, and the ratio for his transformation of horizontal velocity to vertical velocity was the greatest (75.25%) among the three. Last, the maximum CM height of T. Barry was the greatest, and his foot contact duration was the longest.

Analysis of Spike Motion in Male Professional Volleyball foreigner Players (남자 프로배구 용병선수들의 스파이크 동작 분석)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.359-367
    • /
    • 2009
  • This study was conducted to provide useful information for the scientific training of spikes and instruction, by analyzing all kinematical variants including time, distance, velocity, angle factors in spike movements of volleyball matches. The subjects were 4 foreigner players, who participated in the V-League of 2008-2009. The conclusion from this study is as follows. Time for a jumping step was .33s, and Angelko had a bit longer takeoff time than other players. In Angelko and Anderson who were leading in attack power, the whole distance of a spike motion was relatively short, less than 4m. The moment when the center of gravity reached the lowest point was when the right foot bearing weight in the jumping step was passing the left foot, and the highest point of gravity was 2.30m, which appeared just before the impact. The horizontal speed of the center of the gravity was highest as 4.19m/s at the beginning of a jumping step, and lowest at the stance phase of the fore foot just before takeoff. The vertical speed of the center of the gravity was lowest after the right foot touched the ground, and highest after the takeoff of the fore foot. Impact was 3.22m, and the highest ball speed was 28.18m/s.

A study on the lift-generation mechanism of an insect with tandem wing configuration (두 쌍의 날개를 가지는 곤충의 양력 발생 메커니즘에 대한 연구)

  • Kweon, Ji-Hoon;Choi, Hae-Cheon;Chang, Jo-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.389-394
    • /
    • 2007
  • Numerical simulations are conducted to investigate the mechanism for force generation of an insect with tandem wing configuration. Various stroke amplitudes, stroke plane angles and phase difference between the fore- and hind-wings are considered. The Reynolds number is 150 based on the chord length and maximum translation velocity of the wing. When an insect requires high lift such as takeoff, it flaps its wings in parallel at a lower stroke plane angle and a bigger stroke amplitude than those in the hovering. With wings in counter-stroke, the lift fluctuations decrease, and moreover mean lift force decreases. Interactions among the fore-wing, hind-wing and vortices are examined to explain the force variations

  • PDF

Kinematic Analyses of Women's Pole Vault in IAAF World Championships, Daegu 2011 (2011 대구 세계육상선수권대회 여자 장대높이뛰기경기 기술의 운동학적 분석)

  • Choi, Kyoo-Jeong;Yi, Kyung-Ok;Kim, Nam-Hee;Kang, Ji-Eun;Kim, Hye-Lim
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.561-571
    • /
    • 2011
  • The purpose of this study was to perform the kinematic analyses of the women's pole vault skills in IAAF World Championships Daegu 2011. Subjects were the 1st through 8th place finishers in the pole vault. The kinematic analyses were divided into four phases: two dimensional run up analysis, and three dimensional analyses for the remaining plant, swing up, and extension phases. Run-up variables consisted of run up distance, number of steps, average step length, ratio of step length to height, average velocity at the final 5~10 m, approach position. Three variables were analyzed during plant: pole angle, center of gravity (COG) velocity, and COG takeoff angle. Swing up phase variables included: pole flection angle, COG velocity (horizontal, vertical, resultant), COG trajectory and bar approach angle of COG. Compared to the 2009 World Championships in Berlin, the average vault height increased, while run up velocity and approach position were almost unchanged. However, horizontal velocity during the last two steps of the final approach decreased noticeably compared to speeds from 1990. These results reflect the change in both technique and physical fitness in pole vaulters. During extension, the peak height of COG surpassed the clearance height by an average of 0.11m. These specific results can help coaches and athletes modify training and improve performance.

The Kinematic Analysis of the Last Approach Stride and Take-off Phase of BKH Athlete in the High Jump (남자 높이뛰기 BKH 선수를 중심으로 한 도움닫기 마지막 1보와 발구름 국면의 운동학적 분석)

  • Yoon, Hee-Joong;Kim, Tae-Sam;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.105-115
    • /
    • 2005
  • This study was investigated the kinematic factors of the last approach strides and. take off motion for the skill improving of BKH elite male athlete. 'The subjects chosen for the study were BKH and. KASZCZYK Emillian male athletes who were participated in 2003 Dae-Gu Universiad Games. Three high speed video cameras set in 60frames/s setting were used. for recording from the last approach strides to the apex position. After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates, The kinematic factors of the distance, velocity and angle variable were calculated for Kwon3D 3.1. The following conclusions were drawn; 1. It showed longer stride length, as well as faster horizontal and lateral velocity than the success trial during the approach phase. For consistent of the approach rhythm, it appeared that the subject should a short length for obtain the breaking force by the lower COG during the approach phase. 2. The body lean angle showed a small angle by a high COG during the take-off phase. For obtain the vertical displacement of the COG and a enough space form the bar after take-off, it appeared that the subject should increase the body lean angle. 3. For obtain the vertical force during the takeoff phase, it appeared that the subject should keep straight as possible the knee joint. Therefor, the subject can be obtain a enough breaking force at the approach landing.

Affection of Game Character's Jumping Motion Factors on Visual Effects (게임 캐릭터의 점프 동작 요인이 시각적 효과에 미치는 영향)

  • Go, Hye-Young;Yoon, Seon-Jeong
    • Journal of Korea Game Society
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 2011
  • In this paper, affection of jumping motion factors on visual effects are studied for game character's natural motion realization. First, 3 kinds of games that realize natural motions are selected and 4-types of characters jumping motions are captured from it. Then, the motions are measured using four fundamental principles of jumping as takeoff strength, landing impact, landing elasticity and flexibility, and measured in motion factors as time, distance, angle either. Finally, consistent characteristics of visual effects and motion factors on jumping motion are suggested. The study could be used to basic information for realization of character's natural jumping motion.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

The Kinematic Analysis of Handspring Salto Forward Piked (핸드스프링 몸접어 앞공중돌기동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2007
  • The purpose of this study is to compare and analyze the phase-by-phase elapsed time, the COG, the body joint angle changes and the angular velocities of each phase of Handspring Salto Forward Piked performed by 4 college gymnasts through 3D movement analysis program. 1. The average elapsed time for each phase was .13sec for Phase 1, .18sec for Phase 2, .4sec for Phase 3, and .3sec for Phase 5. The elapsed time for Phase 1 to Phase 3 handspring was .35sec on average and the elapsed time for Phase 4 to Phase 5 handspring salto forward piked was .7sec on average. And so it showed that the whole elapsed time was 1.44sec. 2. The average horizontal changes of COG were 93.2 cm at E1, 138. 5 cm at E2, 215.7 cm at E3, 369.2 cm at E4, 450.7 cm at E5, and 553.1 cm at E6. The average vertical changes of COG were 83.1 cm at E1, 71.3 cm at E2, 78.9 cm at E3, 93.7 cm at E4, 150.8 cm at E5, and 97.2 cm at E6. 3. The average shoulder joint angles at each phase were 131.6 deg at E1, 153.5 deg at E2, 135.4 deg at E3, 113.4 deg at E4, 39.6 deg at E5, and 67.5 deg at E6. And the average hip joint angles at each phase were 82.2 deg at E1, 60 deg at E2, 101.9 deg at E3, 161.2 deg at E4, 97.7 deg at E5, and 167 deg at E6. 4. The average shoulder joint angular velocities at each phase were 130.9deg/s E1, 73.1 deg/s at E2, -133.9 deg/s at E3, -194.4 deg/s at E4, 29.4 deg/s at E5, and -50.1 deg/s at E6. And the average hip joint angular velocities at each phase were -154.7 deg/s E1, -96.5 deg/s at E2, 495.9 deg/s at E3, 281.5 deg/s at E4, 90.3 deg/s at E5, and 181.7 deg/s at E6. The results shows that, as for the performance of handspring salto forward piked, it is important to move in short time and horizontally from the hop step to the point to place the hands on the floor and jump, and to stretch the hip joints as much as possible after the displacement of the hands and to keep the hip joints stretched and high in the vertical position at the takeoff. And it is also important to bend the shoulder joints and the hip joints fast and spin as much as possible after the takeoff, and to decrease the speed of spinning by bending he shoulder joints and the hip joints quickly after the highest point of COG and make a stable landing.

Kinematic Analysis of 100-m Women's Hurdlers at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 100m 허들 선수들의 운동학적 분석)

  • Ryu, Jae-Kyun;Park, Young-Jin;Ryu, Ji-Seon;Kim, Tae-Sam;Hwang, Won-Seob;Park, Sang-Kyoon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • The purpose of this study was to investigate the kinematic characteristics of the $5^{th}$ and $6^{th}$ hurdle clearances during the final of the 100-m hurdles event at the IAAF World Championships, Daegu 2011. To this end, the hurdling motions of the top 4 ranked female hurdlers in the competition were analyzed. A total of 12 cameras were used to record their motions, with a sampling frequency of 120 Hz. The cameras were calibrated using $11{\times}2{\times}1\;m$ control objects that covered all of the lanes ($1^{st}{\sim}8^{th}$ lanes). After analyzing all the data, we arrived at the following results. For the take-off phase, a negative relationship between the take-off time (CT) and athlete's rank was found. In addition, the average distances from the hurdle to take-off (L1) were shown to be 2.23 m and 2.17 m for the $5^{th}$ and $6^{th}$ hurdles, respectively. For the distance from the hurdle to landing (L2), Pearson ($1^{st}$ rank) and Carruthers($2^{nd}$ rank) showed inconsistent patterns whereas Harper ($3^{rd}$ rank) and Porter ($4^{th}$ rank) showed consistent patterns. All althetes revealed similar 3 steps patterns between hurdles, which consisted of a shorter $1^{st}$ step, longer $2^{nd}$ step and shorter $3^{rd}$ step.