• Title/Summary/Keyword: Takagi-Sugeno Fuzzy model

Search Result 241, Processing Time 0.025 seconds

Design of Controller for Affine Takagi-Sugeno Fuzzy System with Parametric Uncertainties via BMI

  • Lee, Sang-In;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.658-662
    • /
    • 2004
  • This paper develops a stability analysis and controller synthesis methodology for a continuous-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties. Affine T-S fuzzy system can be an advantage because it may be able to approximate nonlinear functions to high accuracy with fewer rules than the homogeneous T-S fuzzy systems with linear consequents only. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of bilinear matrix inequalities (BMIs). A simulation example is given to illustrate the application of the proposed method.

  • PDF

An LMI-based Stable Fuzzy Control System Design with Pole-Placement Constraints

  • Hong, Sung-Kyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.87-93
    • /
    • 1999
  • This paper proposes a systematic designs methodology for the Takagi-Sugeno (TS) model based fuzzy control systems with guaranteed stability and pre-specified transient performance for the application to a nonlinear magnetic bearing system. More significantly, in the proposed methodology , the control design problems which considers both stability and desired transient performance are reduced to the standard LMI problems . Therefore, solving these LMI constraints directly (not trial and error) leads to a fuzzy state-feedback controller such that the resulting fuzzy control system meets above two objectives. Simulation and experimentation results show that the proposed LMI-based design methodology yields only the maximized stability boundary but also the desired transient responses.

  • PDF

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

Fuzzy Output-Tracking Control for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 퍼지 출력 추종 제어)

  • Lee, Ho-Jae;Joom, Young-Hoo;Park, Jin-Ba
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • A systematic output tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities. A stability condition on the traversing time instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design.

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Fuzzy $H^{\infty}$ Controller Design for Uncertain Nonlinear Systems (불확실성을 갖는 비선형 시스템의 퍼지 $H^{\infty}$ 제어기 설계)

  • Lee, Kap-Rai;Jeung, Eun-Tae;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.46-54
    • /
    • 1998
  • This paper presents a method for designing robust fuzzy $H^{\infty}$ controllers which stabilize nonlinear systems with parameter uncertainty adn guarantee an induced $L_{2}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Takagi and Sugeno's fuzzy models with uncertainty are used as the model for the uncertain nonlinear systems. Fuzzy control systems utilize the concept of so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the stability condition satisfying decay rate and disturbance attenuation condition for Takagi and Sugeno's fuzzy model with parameter uncertainty are discussed. A sufficient condition for the existence of robust fuzzy $H^{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMIs). Finally, design examples of robust fuzzy $H^{\infty}$ controllers for uncertain nonlinear systems are presented.

  • PDF

Fuzzy Controller Design for Water level Control of Power Plant Drum (화력발전소 드럼의 수위제어를 위한 퍼지 제어기의 설계)

  • 이상혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • In this paper, we propose a fuzzy controller design method for the water level control of the power plant drum in the form of nominimum phase system The proposed method is based on T. Takagi and H. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design methods.

Fuzzy Controller Design for Steam Temperature Control of Power Plant Superheater (화력발전소 과열기의 증기온도 제어를 위한 퍼지 제어기 설계)

  • 이돈구;이상혁;김주식;유정용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.80-86
    • /
    • 2002
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation results.

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.