• Title/Summary/Keyword: Takagi-Sugeno (T-S) fuzzy model

Search Result 113, Processing Time 0.023 seconds

T-S Fuzzy Modeling for Container Cranes Using a RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 T-S 퍼지 모델링)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;So, Myung-Ok;Jin, Gang-Gyoo;Oh, Sea-June
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.697-703
    • /
    • 2007
  • In this paper, we focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. A T-S fuzzy model is characterized by fuzzy "if-then" rules which represent the locally input-output relationship whose consequence part is described by a state space equation as subsystem. The T-S fuzzy model in container cranes first obtains a few number of linear models according to operation conditions and blends these conditions using fuzzy membership functions. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear system of a container crane. Simulations are given to illustrate the performance of T-S fuzzy model.

Water Level Intelligent Controller Design of Power Plant Drum (발전기 드럼의 수위 지능 제어기 설계)

  • Hong, Hyun-Mun;Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.271-274
    • /
    • 2007
  • In this paper, we propose a intelligent controller design method for the water level control of the power plant drum in the form of nonminimum phase system. The proposed method is based on T. Takagi and M. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design method.

  • PDF

Observer-based Intelligent Control of Nonlinear Networked Control Systems with Packet Loss for Wireless Sensor Network (무선 센서 네트워크를 위한 패킷 손실을 포함한 비선형 네트워크 제어 시스템의 관측기 기반 지능 제어기 설계)

  • Ra, In-Ho;Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2009
  • In this paper, an observer-based intelligent controller for the nonlinear networked control systems with packet loss is proposed for wireless sensor network. For the intelligent control of the nonlinear system, it uses the fuzzy system with Takagi-Sugeno (T-S) fuzzy model. The observer is designed for the fuzzy networked control system, and the output feedback controller is proposed for the stability of estimates and errors. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Robust Adaptive Fuzzy Observer Based Synchronization of Chaotic Systems

  • Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.341-344
    • /
    • 2007
  • This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization of chaotic systems. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. This improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived and the stability of the proposed observer is analyzed. Some simulation result is given to present the validity of theoretical derivations and the performance of the proposed observer.

  • PDF

A Fuzzy Model Based Sensor Fault Detection Scheme for Nonlinear Dynamic Systems (퍼지모델을 이용한 비선형시스템의 센서고장 검출식별)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.407-414
    • /
    • 2007
  • A sensor fault detection scheme(SFDS) for a class of nonlinear systems that can be represented by Takagi-Sugeno fuzzy model is proposed. Basically, the SFDS may be considered as a multiple observer scheme(MOS) in which the bank of state observers and the detection & isolation logic are included. However, the proposed scheme has two great differences from the conventional MOSs. First, the proposed scheme includes fuzzy fault detection observers(FFDO) that are constructed based on the T-S fuzzy model that provides very good approximation to nonlinear dynamic systems. Secondly, unlike the conventional MOS, the FFDOS are driven not parallelly but sequentially according to the predetermined sequence to avoid the massive computational burden, which is known to be the biggest obstacle to the practical application of the multiple observer based FDI schemes. During the operating time, each FFDO generates the residuals carrying the information of a specified fault, and the corresponding fault detection logic unit performs the logical operations to detect and isolate the fault of interest. The proposed scheme is applied to an inverted pendulum control system for sensor fault detection/isolation. Simulation study shows the practical feasibility of the proposed scheme.

Optimal Fuzzy Filter for Nonlinear Systems with Variance Constraints (분산 제약을 갖는 비선형 시스템의 최적 퍼지 필터)

  • Noh, Sun-Young;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint. First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error state is mean square bounded, and the steady state variance of the estimation error of each state is not more than the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the design procedure and expected performance through simulations.

Static Output Feedback Robust $H_{\infty}$ Fuzzy Control of Nonlinear Systems with Time-Varying Delay (시변 지연이 있는 비선형 시스템에 대한 $H_{\infty}$ 퍼지 강인제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.379-381
    • /
    • 2004
  • In this paper, a robust $H_{\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H_{\infty}$ controllers are given in terms of linear matrix inequalities.

  • PDF

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

Static Output Feedback Robust $H\infty$ Fuzzy Control of Discrete-Time Nonlinear Systems with Time-Varying Delay (시변 지연 이산 시간 비선형 시스템에 대한 정적 출력 궤환 $H\infty$ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.149-152
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi -Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities.

  • PDF