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Abstract

In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint.
First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error
state is mean square bounded, and the steady state variance of the estimation error of each state is not more than
the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix
inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the
design procedure and expected performance through simulations..
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1. Introduction dynamic systems[3]. For example, a robust Kalman

filtering problem with bounded parameter uncertainty

The well-known Kalman filter provides a recursive was considered only in the state matrix [4]. The A,
algorithm to minimize the variance of the state filtering approach aims at minimizing the H, norm
estimation error when the measurement noise is of the transfer function from noises to the estimation
known. This estimation approach may not be robust error, while the robust filtering approach guarantees
against moldering uncertainty and disturbances[1,2]. an upper bound to the quadratic cost in spite of
In recent year, there has been considerable attention various parameter uncertainties, and then minimizes

to robust estimation and H_filtering problems for this upper bound locally[5]. On the other hand, the
robust filtering problem for T-S fuzzy systems has

2ol xp: o012u 42 202 been investigated in the past decades [6]. Based on
EA}(?—X-I OIx}-Lgm;_q 1()E$J gel the T-S fuzzy model, the H, fuzzy filtering design
AR &R A} : 20121 102 92 for the dynamic systems can be characterized in

terms of minimizing the attenuation level subject to

o =22 pod ME(MSIET e MYUoZ sHEod some LMIS[7:.|. It reguires a common solution to a
IRIEte] X212 who} LsEl i Tel(No. 2012014088). setdolf Rlca.ttl e(cilue;)tlonsh Basl,jed on bthe TTS fuzzy
B =22 o00EE X SA|AHSE EASEOE 2 model, motivate y the a ox(e 0 Servatlons,. we
=202 MEEO 2 =2xof AR develop a robust fuzzy filter of nonlinear
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discrete-time  with  estimation error  variance
constraint. A state estimation approach called error
covariance assignment theory was first proposed in
[8] and then extended to the nonlinear case. This
theory provides an alternative, more straightforward
technique to meet the prespecified estimation error
variance constraints. The main idea is to design a
filter ~which directly assigns the prespecified
steady—state estimation error covariance. However,
there are few papers developing the robust
estimation technique for uncertain systems subject to
the simultaneous achievement of error variance
upper-bound  constraint and A, disturbance
attenuation constraint.

In this paper, we consider the optimal fuzzy filter
of nonlinear discrete-time with estimation error
variance constraint. An error variance constrained
filter —admits the system to have invariant
measurement noise with intensity as large as
possible. First, the Takagi and Sugeno(T-S) fuzzy
model is employed to approximate the nonlinear
system. Next, the error state is mean square
bounded, and the steady state variance of the
estimation error of each state is not more than the
individual prespecified value. It is shown that, the
addressed problem can be carried out by solving
linear matrix inequality (LMI) and some algebraic
quadratic matrix inequalities. This paper is organized
as follows: Section 2 formulate the problem under
consideration. Optimal fuzzy filtering is introduced in
Section 3. Simulation results is presented in Section
4, and finally we conclude the paper in Section 5.

2. Problem Statement

The system plant with missing measurements is
represented by th T-S fuzzy model. This is
described by the following IF-THEN rules and will
be employed here to deal with the estimation design
problem for the nonlinear system. The ith rule of
the fuzzy linear model for the nonlinear system is of
the following form:

R': IF z,(k) is I} and .. andz()isF; (1)
THEN z(k+1) = AT( ) +w (k)

y(k) = Cx (k) +v(k), i=1,2,..,p

where [ is fuzzy set of Zg(k‘) in R z(k) denotes
the ith fuzzy rule; y(k) denotes the vector of the
outputs; z,(k) are the premise variables. w(k) and
v(k) are uncorrelated stationary zero mean white
noise sequences with respective covariance @ and R.
Using the center average defuzzifer, product
inference, and singleton fuzzifier, the out put of fuzzy
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systems is inferred as follows:

k) +w (k)] @)
y(k) = 30 (= (R) [ G () +o (k)

where hi(Z(k‘)):Ma Mi(z(k)):ﬂnjzj(k)
Z]/Li(Z(k)) !

and I};(z(k)) is the grade of membership of z (k) in I;;.
For For notational convenience in the following discussions,

we denote that

=34, BW=35, =3¢ ©

i=1

Based on the fuzzy model (2), in this paper, the following
fuzzy estimator is adopted

z(k+1) = Gz(k) + Ky(k) 4
where z(k) stands for the state estimate, G and K are
filter parameters to be designed.

Defined the estimation error and the estimation error
covariance, respectively, as follows.

e(k) =z (k) —z(k) (5)
P(k)==Ele(k)e” (k)] (6)
Then, it follows from (2) and (4) and from (6) and (7) that

e(k+1)=[4,(h) — G— KC,(h)]z (k) + Ge (k)  (T)
+w(k) — Kv(k)
Define
zp(k) =z (k) e(k)]" ®)
A;(h) 0
f:[A — G- KC,(h) G]’ ©
[’ 0,4 10)
Wf.:Bfo 1n
ars
@ KRKT
X(k) = Elz,(k)x ] (k)] (12)
X, (k) X, (k)
[Xf(k) X, (k)}

Considering (2) and (4), we obtain the following augmented
system.

xf(k+1) =Af:vf(k) +Bfwf(k) (13)
2,000 =[z(0) =(0)—=z(0)]"

where wy stands for a zero mean Gaussian white noise
sequence with covariance 7> 0.



3. Optimal Fuzzy Filtering

In this section, a solution to the variance
constrained state estimation problem formulated in
the previous section will be obtained. The purpose of
this paper is to design the filter parameters , G, and
K. The following requirements are met
simultaneously.

1) The state of the augmented system (13) is mean
square bounded.
2) The steady-state erro covariance X,, meets

[z, (k)] < af, i=1,2,.,n (14)
where [X ], means the steady-state variance of the
ith error state, and o} denotes the prespecified

steady-state error estimation variance constraint on
the ith state.

The following lemma is useful in the proof of main
results.

1(Schur complement):Given constant
matrices 2, 2y 02, 2, =0  and
0< 2, =07 then, 2, + 22,2, <0 is and only if

Qo —82, O
[93 _Qz]<0 or [Q’;T ) <0 (15)

Lemma
where

Lemma 2 [9] For a given negative definite matrix
IT <0, there always exists a matrix LER" P(p <n)
such that IT+LL7<0.

Lemma 3 (Matrix Inverse Lemma): Let A4, B, C
and D be given matrices of appropriate dimension
with A, D, and D™ '+ CA B being invertible;
(A+BDC) '=A"'"-A"'B(D'+cAa™'B)'cA™!
hold.

Lemma 4 [10]: Let a positive scalar €>0 and a
positive definite matrix 0;>0 be such that
T
NN/ < el
Then, we have that

A A< el (16)

Using the statistics of the noise w(k), v(k), X(k+1)
defined in (12) is found to satisfy.

We know from [11] that, if the state of (13) is
mean square bounded, the steady-state covariance X
of (13) defined by

X:=limX(k) an
k—00
exists and satisfied the following discrete-time

modified Lyapunov equation:

S0 Horg e 8|ME A2l HE mx e

- T
X=A XA+ W, (18)

Theorem 1 Assume that there exists a positive
scalar € >0 such that following two quadratic matrix
inequalities:

A;(R)PAh)— P+ W<0 (19)
GP,G*- P,
+(4,(n) = G= KC,(n)) Py {(4;(h) — G— KC;(h)) T <0
(20)

respectively have positive-definite solutions P, <0
and P, >0, where

G=A;(h)+ (el+ WA (R)T (P =D (21)
And by using Lemma 2, LER"“!(p<n) and
U= RP*? is an arbitrary orthogonal matrix. Then,

the fuzzy estimatorr (4) with the parameters
determined by (21) and
K=GP,G"R '+ LU="? (22)

Proof : Since A,(h) is assumed to be nonsingular.
We set

P=

P 0
0 5

Then, by means of Lemma 4, it is easily verified
that

AP A—P P T (23)
B Ay — Pt W= 0= ol 0,
where
U, =AW (P = TN A- P+ W (24)

W, = A, (h) (P =& 1) (A, (h) — G— KC;(R)) "+ W
(25)

v,, = GP,G"— P, (26)
+(4,(h) = G—KC,(W)(P =& ' 1"D™!
« (4;(h)— G—KC;(h))"+ W+ KRK"
It follows from the matrix inverse Lemma 3 that

(P'—e ') =P+ P I el—-IPTY) IR,
and, therefore, equation (19) of Theoreml implies

that
@, <0.

And substituting the expression of G in (21) into
(25) leads to ¥, =0 easily.

Next, we will consider ¥,,. First, for presentation

convenience, we denote
2=(A4,(h) -G (P = D) (A4, (h) - T+ W (27)

s=c(h)prC™+ vV (28)

=X+ GP,G"- P,— GR,C'X 'C,P,GT (29)
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By using the definitions (27)-(29), we can rearrange
(26) as follow:

W,, = X+ (G— KC,(h))P,(G— KC,(h))"— P, (30)

+ KC,(h)P,C,(h) 'K+ KQK™

=3+ GP,G"- P+ K|C,(h)P,C.(h) T+ RIKT
- GP,CTK"— KC,(h) P,GT

=Y+ GPR,G"-P,— GP,C/(h)'="'cP,GT
+(K=V?— GR,C.(h) "= 1?)
< (K51/2 _ GPZCL_(h)TE»I/z)T

=I1+(K="? - GR,C,(h) T=71?)
X (K="= GP,Ci(h) "= /)T

Noticing the expression of K= GP,GTR™ '+ LU= in

(22) and the fact UUT=1I we obtain

(K='2— GP,C"R V) (K=" - GP,C'R V)T =LL”
(31)

And it follows from (30), the definition of the matrix
L and equation (20) of Theorem 1 that
Wy, =IT+LL7<0 (32)

The proof is completed.

4. Simulation results

In this section is present a example. This is the
same example as that considered in [10]. The vehicle
dynamics and measurements can be approximated by
the following equations. The following noisy fuzzy
model can be used to represent the system:
if z(k)is F, (33)
then z(k+1) :Aﬁ(k) +B]u(k) +w(k)
y(k)ZQI(k)+v(k) 1=1,2
The membership function are defined as
F = {about 0} and F, ={about + 7},

The membership grades

hy = (1_ 1+exp(—i1’>(z—7r/2)) )X( 1+€XD(—;(Z+7T/2)) )
hy=1—h,

1-VI/L 00
A= VT/L 10|,
(v?)?/(2/L) 10
1-VT/L 0 0
A, = VT/L 1 0],
(v1)?/(2/L)(x/100) V/(7/100) 1

B, =B,=[VvT/l 0 0]~

We use the following system parameters:
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1 =2.8m, L=55m,V=—1m/s, T=05s

)

The steady-state error covariance X,, meets

(X, ), <aj =035 [X, ]y <a;=08

By using the Schur Lemma 1, we can convert (19)
into the following linear matrix inequality(LMI) and
then we solve €, P, and the standard Riccati-like

matrix inequality for equation (20) for P,. We get a

solution:
e=0.574
—0.0412 0.0041 0.001 —0.274 0.241 0.5274
P, =1 0.0037 —0.0245 0.874 | P, =| 0.174 —1.2410.4265
0.0045 —0.2472 0.485 0.0485 —0.257 0.8713
One of the fuzzy estimator parameter, G is

calculated form (21) as follows:

0.521 0.175 0.2458
0.034 1.255 0.4125
0.7410.814 0.2745

G=

To obtain another parameter A, we choose L =0.31
Then, it follows from (22) that

K=| 0.052 —0.792 0.2243

0.9482 —0.3050 08425

—1.212 0.712 0.5741}

Fig. 1 shows the position estimation error of the
unconstrained Kalman filter, and Fig. 2 shows the
position estimation error of the proposed method. It
can be seen that the proposed constrained filter
results in much more accurate estimates than
unconstrained filter.

Pasition Estimation Error (Unconstrained)
T T T

meters

L L L L
a0 100 150 200 250 300
seconds

Fig. 1. Variance unconstrained position errors of 100
Monte Carlo simulations (Dotted line is north
position, solid line is east position).



Fuosition Estirmation Error (Constrained )

meters

1 1 1 |
il 50 100 150 200 250 300
seconds

Fig. 2. Variance constrained position errors of 100
Monte Carlo simulations (Dotted line is north
position, solid line is east position).

5. Conclusion

In this paper, we have considered the optimal
fuzzy filter of nonlinear discrete-time with estimation
error variance constraint. An error variance
constrained filter admits the system to have invariant
measurement noise with intensity as large as
possible. First, the T-S fuzzy model has been
employed to approximate the nonlinear system. Next,
the error state was mean square bounded, and the
steady state variance of the estimation error of each
state was not more than the individual prespecified
value. It has been shown that, the addressed problem
can be carried out by solving linear matrix inequality
(LMI) and some algebraic quadratic matrix
inequalities.
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