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요 약

본 논문에서는 추정 분산 제약을 갖는 비선형 이산시간에 대한 최적의 퍼지 필터에 대한 내용을 다루고자 한다. 필터를 설

계할 때, 추정오차의 분산값은 필터의 성능이 결정하는 변수중 하나다. 이런 분산값에 더욱 강인한 필터를 설계하고자, 분

산 제약 조건을 주어 필터를 설계하고자 한다. 먼저, 비선형 모델을 Tagaki-Sugeno 퍼지 모델을 이용하여 선형 모델로 변

형한 후, 이 모델을 기반으로 선형 필터를 디자인한다. 이때 필터설계 과정 중 필터의 각 파라미터값을 구하기 위해 상태

추정오차 값은 평균제곱에 제한되며, 상태오차의 정상상태 분산값은 각각의 미리 정한 상한 제한 값 보다 작은 조건에서

필터를 설계하여 선형행렬부등식과 대수 이차 행렬부등식을 이용하여 파라미터값을 구한다. 이렇게 설계된 퍼지 필터는 트

럭트레일러 시뮬레이션을 통해 설계 과정과 성능을 보여준다.

키워드 : 최적퍼지필터, 분산제약, T-S 퍼지모델, 비선형성, 선형행렬부등식, 대수이차행렬부등식

Abstract

In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint.

First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error

state is mean square bounded, and the steady state variance of the estimation error of each state is not more than

the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix

inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the

design procedure and expected performance through simulations..

Key Words : Optimal fuzzy filter, Variance constraints, linear matrix inequality (LMI), T-S fuzzy model., algebraic

quadratic matrix inequalities

1. Introduction

The well-known Kalman filter provides a recursive

algorithm to minimize the variance of the state

estimation error when the measurement noise is

known. This estimation approach may not be robust

against moldering uncertainty and disturbances[1,2].

In recent year, there has been considerable attention

to robust estimation and ∞filtering problems for

dynamic systems[3]. For example, a robust Kalman

filtering problem with bounded parameter uncertainty

was considered only in the state matrix [4]. The ∞

filtering approach aims at minimizing the ∞ norm

of the transfer function from noises to the estimation

error, while the robust filtering approach guarantees

an upper bound to the quadratic cost in spite of

various parameter uncertainties, and then minimizes

this upper bound locally[5]. On the other hand, the

robust filtering problem for T-S fuzzy systems has

been investigated in the past decades [6]. Based on

the T-S fuzzy model, the ∞ fuzzy filtering design

for the dynamic systems can be characterized in

terms of minimizing the attenuation level subject to

some LMIs[7]. It requires a common solution to a

set of Ricatti equations. Based on the T-S fuzzy

model, motivated by the above observations, we

develop a robust fuzzy filter of nonlinear
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discrete-time with estimation error variance

constraint. A state estimation approach called error

covariance assignment theory was first proposed in

[8] and then extended to the nonlinear case. This

theory provides an alternative, more straightforward

technique to meet the prespecified estimation error

variance constraints. The main idea is to design a

filter which directly assigns the prespecified

steady-state estimation error covariance. However,

there are few papers developing the robust

estimation technique for uncertain systems subject to

the simultaneous achievement of error variance

upper-bound constraint and ∞ disturbance

attenuation constraint.

In this paper, we consider the optimal fuzzy filter

of nonlinear discrete-time with estimation error

variance constraint. An error variance constrained

filter admits the system to have invariant

measurement noise with intensity as large as

possible. First, the Takagi and Sugeno(T-S) fuzzy

model is employed to approximate the nonlinear

system. Next, the error state is mean square

bounded, and the steady state variance of the

estimation error of each state is not more than the

individual prespecified value. It is shown that, the

addressed problem can be carried out by solving

linear matrix inequality (LMI) and some algebraic

quadratic matrix inequalities. This paper is organized

as follows: Section 2 formulate the problem under

consideration. Optimal fuzzy filtering is introduced in

Section 3. Simulation results is presented in Section

4, and finally we conclude the paper in Section 5.

2. Problem Statement

The system plant with missing measurements is

represented by th T-S fuzzy model. This is

described by the following IF-THEN rules and will

be employed here to deal with the estimation design

problem for the nonlinear system. The th rule of

the fuzzy linear model for the nonlinear system is of

the following form:

       
 and and    



  

    

(1)

where  is fuzzy set of  in  ;  denotes

the th fuzzy rule;  denotes the vector of the

outputs;   are the premise variables.  and

 are uncorrelated stationary zero mean white

noise sequences with respective covariance  and  .

Using the center average defuzzifer, product

inference, and singleton fuzzifier, the out put of fuzzy

systems is inferred as follows:

 
  



  

 
  



   

(2)

where  


  






  







and  is the grade of membership of  in .

For For notational convenience in the following discussions,

we denote that

  
  



  
  



  
  



 (3)

Based on the fuzzy model (2), in this paper, the following

fuzzy estimator is adopted

  (4)

where  stands for the state estimate,  and  are

filter parameters to be designed.

Defined the estimation error and the estimation error

covariance, respectively, as follows.

   (5)

  (6)

Then, it follows from (2) and (4) and from (6) and (7) that

  


(7)

Define

    (8)

 



 


 

   
 (9)

 


 


 

 
 (10)

 






 


 

 

(11)

 






 


  


  



(12)

Considering (2) and (4), we obtain the following augmented

system.

 

    
(13)

where  stands for a zero mean Gaussian white noise

sequence with covariance    .
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3. Optimal Fuzzy Filtering

In this section, a solution to the variance

constrained state estimation problem formulated in

the previous section will be obtained. The purpose of

this paper is to design the filter parameters , , and

. The following requirements are met

simultaneously.

1) The state of the augmented system (13) is mean

square bounded.

2) The steady-state erro covariance  meets

 ≤ 
    (14)

where   means the steady-state variance of the

th error state, and 
 denotes the prespecified

steady-state error estimation variance constraint on

the th state.

The following lemma is useful in the proof of main

results.

Lemma 1(Schur complement):Given constant

matrices   , where  
 and

  
,then, 


  is and only if




 


 



 

 or



 


 


 

 (15)

Lemma 2: [9] For a given negative definite matrix

, there always exists a matrix ∈ × ≤ 

such that  .

Lemma 3 (Matrix Inverse Lemma): Let   
and  be given matrices of appropriate dimension

with  , and   being invertible;

   

hold.

Lemma 4 [10]: Let a positive scalar    and a

positive definite matrix    be such that


 

Then, we have that


≤ (16)

Using the statistics of the noise   , 

defined in (12) is found to satisfy.

We know from [11] that, if the state of (13) is

mean square bounded, the steady-state covariance 
of (13) defined by

  lim
→∞

 (17)

exists and satisfied the following discrete-time

modified Lyapunov equation:


 (18)

Theorem 1 Assume that there exists a positive

scalar    such that following two quadratic matrix

inequalities:


 (19)





  

  

(20)

respectively have positive-definite solutions  

and   , where




 (21)

And by using Lemma 2, ∈ × ≤  and

∈ ×  is an arbitrary orthogonal matrix. Then,

the fuzzy estimatorr (4) with the parameters

determined by (21) and


  (22)

P roof : Since  is assumed to be nonsingular.

We set

 



 


 

 



Then, by means of Lemma 4, it is easily verified

that


   




 


 


 

(23)

where




 (24)






(25)







·  
 

(26)

It follows from the matrix inverse Lemma 3 that


 




and, therefore, equation (19) of Theorem1 implies

that

  .

And substituting the expression of  in (21) into

(25) leads to   easily.

Next, we will consider . First, for presentation

convenience, we denote

 
  (27)


 (28)

 


 
 (29)
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By using the definitions (27)-(29), we can rearrange

(26) as follow:

 


  



  

 












 


× 





× 


(30)

Noticing the expression of 
  in

(22) and the fact   , we obtain


 

   

(31)

And it follows from (30), the definition of the matrix

 and equation (20) of Theorem 1 that

   (32)

The proof is completed.

4. Simulation results

In this section is present a example. This is the

same example as that considered in [10]. The vehicle

dynamics and measurements can be approximated by

the following equations. The following noisy fuzzy

model can be used to represent the system:

i f   

  

    

(33)

The membership function are defined as

   and   ± .

The membership grades

  exp
 × exp

 
 

 










  
  

  


 










  
  

  


       

We use the following system parameters:

         ,

The steady-state error covariance  meets

  ≤
    ≤

 

By using the Schur Lemma 1, we can convert (19)

into the following linear matrix inequality(LMI) and

then we solve  , and the standard Riccati-like

matrix inequality for equation (20) for . We get a

solution:

 

 










  
  
  

 










  
  
  

One of the fuzzy estimator parameter,  is

calculated form (21) as follows:












  
  
  

To obtain another parameter , we choose   .
Then, it follows from (22) that












  
  

  

Fig. 1 shows the position estimation error of the

unconstrained Kalman filter, and Fig. 2 shows the

position estimation error of the proposed method. It

can be seen that the proposed constrained filter

results in much more accurate estimates than

unconstrained filter.

Fig. 1. Variance unconstrained position errors of 100

Monte Carlo simulations (Dotted line is north

position, solid line is east position).
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Fig. 2. Variance constrained position errors of 100

Monte Carlo simulations (Dotted line is north

position, solid line is east position).

5. Conclusion

In this paper, we have considered the optimal

fuzzy filter of nonlinear discrete-time with estimation

error variance constraint. An error variance

constrained filter admits the system to have invariant

measurement noise with intensity as large as

possible. First, the T-S fuzzy model has been

employed to approximate the nonlinear system. Next,

the error state was mean square bounded, and the

steady state variance of the estimation error of each

state was not more than the individual prespecified

value. It has been shown that, the addressed problem

can be carried out by solving linear matrix inequality

(LMI) and some algebraic quadratic matrix

inequalities.
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